The minigene encoding human growth hormone (hGH) has been incorporated into over 300 transgenic mouse lines to improve transgene expression. However, unexpected and functional hGH expression can drastically alter physiology. We list here the mouse lines in which ectopic hGH has been confirmed, and we provide a wiki for lines awaiting analysis.
View Article and Find Full Text PDFThe Nestin-Cre driver mouse line has mild hypopituitarism, reduced body weight, a metabolic phenotype and reduced anxiety. Although several causes have been suggested, a comprehensive explanation is still lacking. In this study we examined the molecular mechanisms leading to this compound phenotype.
View Article and Find Full Text PDFThe human growth hormone (hGH) minigene is frequently used in the derivation of transgenic mouse lines to enhance transgene expression. Although this minigene is present in the transgenes as a secondcistron, and thus not thought to be expressed, we found that three commonly used lines, Pdx1-Cre(Late), RIP-Cre, and MIP-GFP, each expressed significant amounts of hGH in pancreatic islets. Locally secreted hGH binds to prolactin receptors on β cells, activates STAT5 signaling, and induces pregnancy-like changes in gene expression, thereby augmenting pancreatic β cell mass and insulin content.
View Article and Find Full Text PDFOxidative phosphorylation in mitochondria is responsible for 90% of ATP synthesis in most cells. This essential housekeeping function is mediated by nuclear and mitochondrial genes encoding subunits of complex I to V of the respiratory chain. Although complex IV is the best studied of these complexes, the exact function of the striated muscle-specific subunit COX6A2 is still poorly understood.
View Article and Find Full Text PDFDendritic cells (DCs) have been shown to express the tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO-1), a protein presently thought to exert dual and possibly contrasting effects on the immune response. Depletion of tryptophan and release of tryptophan catabolites have been shown to exert a tolerogenic influence on T cell responses, while the IDO enzymatic activity has been recently suggested to promote DC maturation. In this report, we have explored the putative role of IDO-1 in regulating DC biology by analyzing DC development and function from IDO-1 deficient mice.
View Article and Find Full Text PDF