Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction.
View Article and Find Full Text PDFSince 2012, the interest for TMEM165 increased due to its implication in a rare genetic human disease named TMEM165-CDG (Congenital Disorder(s) of Glycosylation). TMEM165 is a Golgi localized protein, highly conserved through evolution and belonging to the uncharacterized protein family 0016 (UPF0016). Although the precise function of TMEM165 in glycosylation is still controversial, our results highly suggest that TMEM165 would act as a Golgi Ca/Mn transporter regulating both Ca and Mn Golgi homeostasis, the latter is required as a major cofactor of many Golgi glycosylation enzymes.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
March 2018
The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca/Mn homeostasis.
View Article and Find Full Text PDFTMEM165 deficiencies lead to one of the congenital disorders of glycosylation (CDG), a group of inherited diseases where the glycosylation process is altered. We recently demonstrated that the Golgi glycosylation defect due to TMEM165 deficiency resulted from a Golgi manganese homeostasis defect and that Mn supplementation was sufficient to rescue normal glycosylation. In the present paper, we highlight TMEM165 as a novel Golgi protein sensitive to manganese.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
April 2017
Background: Defects in TMEM165 gene cause a type-II Congenital Disorder of Glycosylation affecting Golgi glycosylation processes. TMEM165 patients exhibit psychomotor retardation, important osteoporosis, scoliosis, irregular epiphyses and thin bone cortex. TMEM165 protein is highly conserved in evolution and belongs to the family of UPF0016 membrane proteins which could be an unique group of Ca/H antiporters regulating Ca and pH homeostasis and mainly localized in the Golgi apparatus.
View Article and Find Full Text PDFCongenital disorders of glycosylation (CDG) are severe inherited diseases in which aberrant protein glycosylation is a hallmark. From this genetically and clinically heterogenous group, a significant subgroup due to Golgi homeostasis defects is emerging. We previously identified TMEM165 as a Golgi protein involved in CDG.
View Article and Find Full Text PDFKif23 kinesin is an essential actor of cytokinesis in animals. It exists as two major isoforms, known as MKLP1 and CHO1, the longest of which, CHO1, contains two HXRXXS/T NDR/LATS kinase consensus sites. We demonstrate that these two sites are readily phosphorylated by NDR and LATS kinases in vitro, and this requires the presence of an upstream -5 histidine residue.
View Article and Find Full Text PDFTMEM165 has recently been identified as a novel protein involved in CDG-II. TMEM165 has no biological function described so far. Different mutations were recently found in patients with Golgi glycosylation defects and harboring a peculiar skeletal phenotype.
View Article and Find Full Text PDFMost cancer cells use anaerobic-like glycolysis to generate energy instead of oxidative phosphorylation. They also avoid recognition by CTLs, which occurs primarily through decreasing the level of MHC class I (MHC-I) at the cell surface. We find that the two phenomena are linked; culture conditions that force respiration in leukemia cells upregulate MHC-I transcription and protein levels at the cell surface, whereas these decrease in cells forced to perform fermentation as well as in leukemia cells lacking a functional mitochondrial respiratory chain.
View Article and Find Full Text PDFThe discovery of the proteasome in the late 80's as the core protease of what will be then called the ubiquitin-proteasome system, rapidly followed by the development of specific inhibitors of this enzyme, opened up a new era in biology in the 90's. Indeed, the first proteasome inhibitors were instrumental for understanding that the proteasome is a key actor in most, if not all, cellular processes. The recognition of the central role of this complex in intracellular proteolysis in turn fuelled an intense quest for novel compounds with both increased selectivity towards the proteasome and better bioavailability that could be used in fundamental research or in the clinic.
View Article and Find Full Text PDFLte1 is a mitotic regulator long envisaged as a guanosine nucleotide exchange factor (GEF) for Tem1, the small guanosine triphosphatase governing activity of the Saccharomyces cerevisiae mitotic exit network. We demonstrate that this model requires reevaluation. No GEF activity was detectable in vitro, and mutational analysis of Lte1's putative GEF domain indicated that Lte1 activity relies on interaction with Ras for localization at the bud cortex rather than providing nucleotide exchange.
View Article and Find Full Text PDFTumor cell-based vaccines are currently used in clinical trails, but they are in general poorly immunogenic because they are composed of cell extracts or apoptotic cells. Live tumor cells should be much better Ags provided that they are properly processed by the host immune system. We show herein that stable expression of a small hairpin RNA for ERK5 (shERK5) decreases ERK5 levels in human and mouse leukemic cells and leads to their elimination by NK cells in vivo.
View Article and Find Full Text PDFWhereas early cytokinesis events have been relatively well studied, little is known about its final stage, abscission. The Cdc14 phosphatase is involved in the regulation of multiple cell cycle events, and in all systems studied Cdc14 misexpression leads to cytokinesis defects. In this work, we have cloned two CDC14 cDNA from Xenopus, including a previously unreported CDC14B homologue.
View Article and Find Full Text PDFThe RhoGAP Rgd1p is involved in different signal transduction pathways in Saccharomyces cerevisiae through its regulatory activity upon the Rho3 and Rho4 GTPases. The rgd1Delta mutant, which presents a mortality at the entry into the stationary phase in minimal medium, is sensitive to medium acidification caused by biomass augmentation. We showed that low-pH shock leads to abnormal intracellular acidification of the rgd1Delta mutant.
View Article and Find Full Text PDF