Publications by authors named "Geoffrey Wasteneys"

The transition from cell division to differentiation in primary roots is dependent on precise gradients of phytohormones, including auxin, cytokinins and brassinosteroids. The reorganization of microtubules also plays a key role in determining whether a cell will enter another round of mitosis or begin to rapidly elongate as the first step in terminal differentiation. In the last few years, progress has been made to establish connections between signaling pathways at distinct locations within the root.

View Article and Find Full Text PDF

In our 20th anniversary year, we reflect on how fields have changed since our first issue and here look to the future. In this collection of Voices, our writers speculate on the future: in terms of philosophy, cell states, cell processes, and then how to model cell systems.

View Article and Find Full Text PDF

The ability for plant growth to be optimized, either in the light or dark, depends on the intricate balance between cell division and differentiation in specialized regions called meristems. When Arabidopsis () seedlings are grown in the dark, hypocotyl elongation is promoted, whereas root growth is greatly reduced as a result of changes in hormone transport and a reduction in meristematic cell proliferation. Previous work showed that the microtubule-associated protein CLASP sustains root apical meristem size by influencing microtubule organization and by modulating the brassinosteroid signaling pathway.

View Article and Find Full Text PDF

A new study provides insight into microtubule turnover during plant cell division. Using clever molecular-genetic and imaging strategies, the authors demonstrate that the recently discovered CORD4 and 5 proteins associate with phragmoplast microtubules and control recruitment and activity of the microtubule-severing protein katanin.

View Article and Find Full Text PDF

Cellulosic secondary walls evolved convergently in coralline red macroalgae, reinforcing tissues against wave-induced breakage, despite differences in cellulose abundance, microfibril orientation, and wall structure. Cellulose-enriched secondary cell walls are the hallmark of woody vascular plants, which develop thickened walls to support upright growth and resist toppling in terrestrial environments. Here we investigate the striking presence and convergent evolution of cellulosic secondary walls in coralline red algae, which reinforce thalli against forces applied by crashing waves.

View Article and Find Full Text PDF

How organisms attain their specific shapes and modify their growth patterns in response to environmental and chemical signals has been the subject of many investigations. Plant cells are at high turgor pressure and are surrounded by a rigid yet flexible cell wall, which is the primary determinant of plant growth and morphogenesis. Cellulose microfibrils, synthesized by plasma membrane-localized cellulose synthase complexes, are major tension-bearing components of the cell wall that mediate directional growth.

View Article and Find Full Text PDF

Higher plants utilize nucleotide-binding leucine-rich repeat domain proteins (NLRs) as intracellular immune receptors to recognize pathogen-derived effectors and trigger a robust defense. The Activated Disease Resistance 1 (ADR1) family of coiled-coil NLRs (CNLs) have evolved as helper NLRs that function downstream of many TIR-type sensor NLRs (TNLs). Close homologs of ADR1s form the N REQUIREMENT GENE 1 (NRG1) family in Arabidopsis, the function of which is unclear.

View Article and Find Full Text PDF

The capacity for sustained cell division within the plant meristem is a critical determinant of organ structure and performance. This capacity is diminished in mutants lacking the microtubule-associated protein CLASP and when brassinosteroid signaling is increased. Here, we discovered that CLASP is both targeted by and promotes activity of the brassinosteroid pathway in Arabidopsis root apical meristems.

View Article and Find Full Text PDF

Cellulose synthesis at the plasma membrane is a critical process in plant growth and development. The displacement of cellulose synthase complexes (CSCs) by the rigid cellulose polymers they produce is a measure of enzyme activity. Connections between cortical microtubules and CSCs have been identified but it remains unclear how these affect CSC displacement speed.

View Article and Find Full Text PDF

Plant cytokinesis is orchestrated by a specialized structure, the phragmoplast. The phragmoplast first occurred in representatives of Charophyte algae and then became the main division apparatus in land plants. Major cellular activities, including cytoskeletal dynamics, vesicle trafficking, membrane assembly, and cell wall biosynthesis, cooperate in the phragmoplast under the guidance of a complex signaling network.

View Article and Find Full Text PDF

Microtubules are dynamic filaments, the assembly and disassembly of which are under precise control of various associated proteins, including motor proteins and regulatory enzymes. In Arabidopsis thaliana, two such proteins are the ARMADILLO-REPEAT KINESIN 1 (ARK1), which promotes microtubule disassembly, and the NIMA-RELATED KINASE 6 (NEK6), which has a role in organizing microtubule arrays. Previous yeast two-hybrid and in vitro pull-down assays determined that NEK6 can interact with ARK1 through the latter protein's Armadillo-repeat (ARM) cargo domain.

View Article and Find Full Text PDF
Article Synopsis
  • Peroxules are extensions from peroxisomes that form under low reactive oxygen species (ROS) stress but retract during stress mitigation; prolonged stress causes peroxisomes to elongate and eventually split, increasing their numbers in the cell.
  • Using live-imaging techniques on Arabidopsis thaliana, researchers found peroxules appear shortly after high light exposure, coinciding with increased hydrogen peroxide levels in the cytoplasm.
  • The study suggests that peroxules serve as platforms connecting with mitochondria, potentially aiding in the transfer of proteins essential for peroxisome proliferation to boost a plant cell's ability to manage ROS.
View Article and Find Full Text PDF

Plants employ five DNA-dependent RNA polymerases (Pols) in transcription. One of these polymerases, Pol III, has previously been reported to transcribe 5S rRNA, tRNAs, and a number of small RNAs. However, in-depth functional analysis is complicated by the fact that knockout mutations in Pol subunits are typically lethal.

View Article and Find Full Text PDF

Adventitious roots (AR) are post embryonic lateral organs that differentiate from non-root tissues. The understanding of the molecular mechanism which underlies their differentiation is important because of their central role in vegetative plant propagation. Here it was studied how the expression of different microtubule (MT)-associated proteins (MAPs) is affected during AR induction, and whether expression differences are dependent on MT organization itself.

View Article and Find Full Text PDF

Microtubules (MTs) are required throughout plant development for a wide variety of processes, and different strategies have evolved to visualize and analyze them. This chapter provides specific methods that can be used to analyze microtubule organization and dynamic properties in plant systems and summarizes the advantages and limitations for each technique. We outline basic methods for preparing samples for immunofluorescence labeling, including an enzyme-based permeabilization method, and a freeze-shattering method, which generates microfractures in the cell wall to provide antibodies access to cells in cuticle-laden aerial organs such as leaves.

View Article and Find Full Text PDF

Induction of adventitious roots (ARs) in recalcitrant plants often culminates in cell division and callus formation rather than root differentiation. Evidence is provided here to suggest that microtubules (MTs) play a role in the shift from cell division to cell differentiation during AR induction. First, it was found that fewer ARs form in the temperature-sensitive mutant mor1-1, in which the MT-associated protein MOR1 is mutated, and in bot1-1, in which the MT-severing protein katanin is mutated.

View Article and Find Full Text PDF

Plants use robust mechanisms to optimize organ size to prevailing conditions. Modulating the transition from cell division to elongation dramatically affects morphology and size. Although it is well established that auxin, cytokinin and brassinosteroid mediate these transitions, recent works show that the cytoskeleton, which is normally thought to act downstream of these hormones, plays a key role in this regulatory process.

View Article and Find Full Text PDF

Microtubule dynamics are critically important for plant cell development. Here, we show that Arabidopsis thaliana ARMADILLO-REPEAT KINESIN1 (ARK1) plays a key role in root hair tip growth by promoting microtubule catastrophe events. This destabilizing activity appears to maintain adequate free tubulin concentrations in order to permit rapid microtubule growth, which in turn is correlated with uniform tip growth.

View Article and Find Full Text PDF

The nuclear envelope in plant cells has long been known to be a microtubule organizing center (MTOC), but its influence on microtubule organization in the cell cortex has been unclear. Here we show that nuclear MTOC activity favors the formation of longitudinal cortical microtubule (CMT) arrays. We used green fluorescent protein (GFP)-tagged gamma tubulin-complex protein 2 (GCP2) to identify nuclear MTOC activity and GFP-tagged End-Binding Protein 1b (EB1b) to track microtubule growth directions.

View Article and Find Full Text PDF

Giant internodal cells of characean green algae have been widely used for studying cellular physiology. This review emphasizes their significance for understanding cytoarchitecture and cytoplasmic reorganization. The cytoarchitecture of internodal cells undergoes pronounced, cytoskeleton-dependent changes during development and in response to environmental cues.

View Article and Find Full Text PDF

The purpose of this study was to determine if Arabidopsis protoplast transfection could be scaled up, from the commonly used cell-based studies, to be used in triterpenoid production assays as an in planta alternative/complement to other expression systems. Enzyme activities are often identified using heterologous expression systems such as yeast cells. These systems, however, may be incompatible for expressing enzymes involved in specialized (secondary) metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied two mechanisms responsible for the export of GLL23, a lipase involved in glucosinolate metabolism in Arabidopsis thaliana, to prevent harmful accumulation in the endoplasmic reticulum (ER).
  • Two mutant strains were identified: the nuclear cage (nuc) mutant, which showed large ER aggregates, and the cytoplasmic bodies (cyb) mutant with smaller compartments, indicating issues with GLL23 trafficking.
  • The study found that the NUC protein, associated with myrosinase, and the CYB p24 protein, involved in cargo sorting, are crucial for the proper export of GLL23 from the ER, suggesting both a post-translational modification process is needed for its efficient transport.
View Article and Find Full Text PDF

During cellular morphogenesis, changes in cell shape and cell junction topology are fundamental to normal tissue and organ development. Here we show that apoplastic Glycophosphatidylinositol (GPI)-anchored Lipid Transfer Protein (LTPG) is excluded from cell junctions and flat wall regions, and passively accumulates around their borders in the epidermal cells of Arabidopsis thaliana. Beginning with intense accumulation beneath highly curved cell junction borders, this enrichment is gradually lost as cells become more bulbous during their differentiation.

View Article and Find Full Text PDF

Cellulose microfibrils are critical for plant cell specialization and function. Recent advances in live cell imaging of fluorescently tagged cellulose synthases to track cellulose synthesis have greatly advanced our understanding of cellulose biosynthesis. Nevertheless, cellulose deposition patterns remain poorly described in many cell types, including those in the process of division or differentiation.

View Article and Find Full Text PDF