Neurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS) possess multifactorial aetiologies. In recent years, our understanding of the biochemical and molecular pathways across NDDs has increased, however, new advances in small molecule-based therapeutic strategies targeting NDDs are obscure and scarce. Moreover, NDDs have been studied for more than five decades, however, there is a paucity of drugs that can treat NDDs.
View Article and Find Full Text PDFGaussian boson sampling (GBS) has the potential to solve complex graph problems, such as clique finding, which is relevant to drug discovery tasks. However, realizing the full benefits of quantum enhancements requires large-scale quantum hardware with universal programmability. Here we have developed a time-bin-encoded GBS photonic quantum processor that is universal, programmable and software-scalable.
View Article and Find Full Text PDFNeurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are defined by a myriad of complex aetiologies. Understanding the common biochemical molecular pathologies among NDDs gives an opportunity to decipher the overlapping and numerous cross-talk mechanisms of neurodegeneration. Numerous interrelated pathways lead to the progression of neurodegeneration.
View Article and Find Full Text PDFPharmaceuticals (Basel)
February 2022
In this review, the history of boron's early use in drugs, and the history of the use of boron functional groups in medicinal chemistry applications are discussed. This includes diazaborines, boronic acids, benzoxaboroles, boron clusters, and carboranes. Furthermore, critical developments from these functional groups are highlighted along with recent developments, which exemplify potential prospects.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2021
Free radicals are unstable chemical reactive species produced during Redox dyshomeostasis (RDH) inside living cells and are implicated in the pathogenesis of various neurodegenerative diseases. One of the most complicated and life-threatening motor neurodegenerative diseases (MND) is amyotrophic lateral sclerosis (ALS) because of the poor understanding of its pathophysiology and absence of an effective treatment for its cure. During the last 25 years, researchers around the globe have focused their interest on copper/zinc superoxide dismutase (Cu/Zn SOD, SOD1) protein after the landmark discovery of mutant SOD1 (mSOD1) gene as a risk factor for ALS.
View Article and Find Full Text PDFAs a result of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, a clinical complication can arise that is characterized by a hyperinflammatory cytokine profile, often termed a 'cytokine storm'. A protein complex (nuclear factor kappa-light-chain-enhancer of activated B cells; NF-κB) is intricately involved in regulating inflammation and the immune response following viral infections, with a reduction in cytokine production often observed following a decrease in NF-κB activity. An approved asthma drug, montelukast, has been found to modulate the activity of NF-κB, and result in a corresponding decrease in proinflammatory mediators.
View Article and Find Full Text PDFMini Rev Med Chem
February 2021
Due to the rapidly developing nature of the current COVID-19 outbreak and its almost immediate humanitarian and economic toll, coronavirus drug discovery efforts have largely focused on generating potential COVID-19 drug candidates as quickly as possible. Globally, scientists are working day and night to find the best possible solution to treat the deadly virus. During the first few months of 2020, the SARS-CoV-2 outbreak quickly developed into a pandemic, with a mortality rate that was increasing at an exponential rate day by day.
View Article and Find Full Text PDFAs part of our initial efforts into developing a tumor-targeting therapy, C-10 substituted derivatives of a camptothecin analog (SN-38) have been synthesized (2-, 3- and 4-nitrobenzyl) for use as potential hypoxia-activated prodrugs and evaluated for their cytotoxicity, topoisomerase I inhibition and electrochemical (reductive) properties. All three derivatives were found to possess reduced toxicity towards human leukemia K562 cells compared to SN-38, validating a condition for prodrug action. Using an MTS assay, IC's were found to be 3.
View Article and Find Full Text PDFHypoxia in tumor cells is characterized by a lack of oxygen resulting from reduced blood supply to the surrounding tissue, and is a common characteristic of solid tumors as a consequence of rapid cell growth. Hypoxia in tumors is a predictor of both resistance to chemotherapy and of a metastatic/aggressive form of cancer, and as a result, development of cancer therapies which target hypoxia is of vital importance. One such targeting strategy is the development of hypoxia-activated prodrugs (HAP) which can preferentially release chemotherapeutic agents within hypoxic tumor regions.
View Article and Find Full Text PDFA series of simple 2-methylpyridines were synthesized in an expedited and convenient manner using a simplified bench-top continuous flow setup. The reactions proceeded with a high degree of selectivity, producing α-methylated pyridines in a much greener fashion than is possible using conventional batch reaction protocols. Eight 2-methylated pyridines were produced by progressing starting material through a column packed with Raney(®) nickel using a low boiling point alcohol (1-propanol) at high temperature.
View Article and Find Full Text PDFWAC04657 is a wild-isolate Streptomyces that has antibiotic activities against multidrug-resistant Gram-negative and Gram-positive pathogens. From a solid-agar culture of this organism we isolated 13-deoxytetrodecamycin, a novel antibacterial molecule. It is one of at least three distinct antimicrobial compounds produced by this strain.
View Article and Find Full Text PDFThe use of flow chemistry techniques has flourished over the past decade, with the field expanding to include the use of copper flow reactors in bench-top organic synthesis in recent years. These reactors are available in a variety of forms and possess a number of advantages over their batch reaction counterparts, in terms of both safety and yield. This review will highlight the current research employing copper flow reactors, such as 1,3-dipolar cycloadditions ('click' chemistry), macrocyclizations (via 'click' chemistry), Sonogashira C-C couplings, Ullmann couplings, decarboxylations, and other reported findings.
View Article and Find Full Text PDFBeilstein J Org Chem
September 2014
Transition metal-mediated N-O bond cleavage reactions of heterobicycloalkene-fused 3-methyl-2-isoxazolines were investigated. Optimal cleavage conditions were found with Raney nickel/AlCl3 mediation in aqueous methanol. The reaction provided a diverse collection of novel heterobicycle-fused β-hydroxyketones with good to excellent yields (66-95%) and without the need for chromatographic purification.
View Article and Find Full Text PDFInhibition of stearoyl-CoA desaturase (SCD) activity represents a potential novel mechanism for the treatment of metabolic disorders including obesity and type II diabetes. To circumvent skin and eye adverse events observed in rodents with systemically-distributed SCD inhibitors, our research efforts have been focused on the search for new and structurally diverse liver-targeted SCD inhibitors. This work has led to the discovery of novel, potent and structurally diverse liver-targeted bispyrrolidine SCD inhibitors.
View Article and Find Full Text PDFA weak antagonist of the pyrimidinergic receptor P2Y(14) containing a dihydropyridopyrimidine core was identified through high-throughput screening. Subsequent optimization led to potent, non-UTP competitive antagonists and represent the first reported non-nucleotide antagonists of this receptor. Compound 18q was identified as a 10 nM P2Y(14) antagonist with good oral bioavailability and provided sufficient exposure in mice to be used as a tool for future in vivo studies.
View Article and Find Full Text PDFA weak, UDP-competitive antagonist of the pyrimidinergic receptor P2RY(14) with a naphthoic acid core was identified through high-throughput screening. Optimization provided compounds with improved potency but poor pharmacokinetics. Acylglucuronidation was determined to be the major route of metabolism.
View Article and Find Full Text PDFThe use of three orthogonally tagged phosphine reagents to assist chemical work-up via phase-switch scavenging in conjunction with a modular flow reactor is described. These techniques (acidic, basic and Click chemistry) are used to prepare various amides and tri-substituted guanidines from in situ generated iminophosphoranes.
View Article and Find Full Text PDFThe pharmaceutical industry is under increasing pressure on many fronts, from investors requiring larger returns to consumer groups and health authorities demanding cheaper and safer drugs. It is also feeling additional pressure from the infringement upon its profit margins by generic drug producers. Many companies are aggressively pursuing outsourcing contracts in an attempt to counter many of the financial pressures and streamline their operations.
View Article and Find Full Text PDFA general flow process for the multi-step assembly of peptides has been developed and this procedure has been used to successfully construct a series of Boc, Cbz and Fmoc N-protected dipeptides in excellent yields and purities, including an extension of the method to enable the preparation of a tripeptide derivative.
View Article and Find Full Text PDF[Structure: see text] A multipurpose mesofluidic flow reactor capable of producing gram quantities of material has been developed as an automated synthesis platform for the rapid on-demand synthesis of key building blocks and small exploratory libraries. The reactor is configured to provide the maximum flexibility for screening of reaction parameters that incorporate on-chip mixing and columns of solid supported reagents to expedite the chemical syntheses.
View Article and Find Full Text PDFA flow process for the multi-step synthesis of the alkaloid natural product (+/-)-oxomaritidine is described, mediated through the use of microfluidic pumping systems that progress material through various packed columns containing immobilized reagents, catalysts, scavengers or catch and release agents; our route involves the combination of seven separate synthetic steps linked into one continuous sequence utilizing flow chemistry.
View Article and Find Full Text PDFThis article describes the design, optimisation and development of a Suzuki cross-coupling protocol mediated by an efficient palladium-encapsulated catalyst (Pd EnCat) under microwave irradiation. The methodology has been used in both batch mode for classical library preparation and in continuous-flow applications furnishing multigram quantities of material. Described is a method that uses direct focused microwave heating whilst applying an external cooling source.
View Article and Find Full Text PDFThe molybdenum-mediated cleavage reactions of isoxazoline rings fused in bicyclic frameworks were investigated. A tandem N-O bond cleavage-retro aldol reaction of an isoxazoline ring fused in a bicyclic framework led to the cleavage of the bicyclic framework. These reactions provide a novel stereoselective synthesis of substituted cyclopentene rings, cyclopentane rings, and attached-ring systems.
View Article and Find Full Text PDF