Publications by authors named "Geoffrey Siwo"

Background: Little is known about the determinants of disease progression among African patients with chronic HBV infection.

Methods: We used machine-learning models with longitudinal data to establish predictive algorithms in a well-characterized cohort of Ethiopian HBV-infected patients without baseline liver fibrosis. Disease progression was defined as an increase in liver stiffness to >7.

View Article and Find Full Text PDF

Background: Serum aspartate transaminase (sAST) level is used routinely in conjunction with other clinical assays to assess liver health and disease. Increasing evidence suggests that sAST is associated with all-cause mortality and has prognostic value in several cancers, including gastrointestinal and urothelial cancers. Here, we undertake a systems approach to unravel molecular connections between AST and cancer prognosis, metabolism, and immune signatures at the transcriptomic and proteomic levels.

View Article and Find Full Text PDF

Background: Factors influencing the health of populations are subjects of interdisciplinary study. However, datasets relevant to public health often lack interdisciplinary breath. It is difficult to combine data on health outcomes with datasets on potentially important contextual factors, like political violence or development, due to incompatible levels of geographic support; differing data formats and structures; differences in sampling procedures and wording; and the stability of temporal trends.

View Article and Find Full Text PDF

Background: Vaccination refusal exacerbates global COVID-19 vaccination inequities. No studies in East Africa have examined temporal trends in vaccination refusal, precluding addressing refusal. We assessed vaccine refusal over time in Kenya, and characterized factors associated with changes in vaccination refusal.

View Article and Find Full Text PDF

Background: Highly connected individuals disseminate information effectively within their social network. To apply this concept to inflammatory bowel disease (IBD) care and lay the foundation for network interventions to disseminate high-quality treatment, we assessed the need for improving the IBD practices of highly connected clinicians. We aimed to examine whether highly connected clinicians who treat IBD patients were more likely to provide high-quality treatment than less connected clinicians.

View Article and Find Full Text PDF

Cancer and malaria exemplify two maladies historically assigned to separated research spaces. Cancer, on the one hand, ranks among the top priorities in the research agenda of developed countries. Its rise is mostly explained by the ageing of these populations and linked to environment and lifestyle.

View Article and Find Full Text PDF

Scientific research plays a key role in the advancement of human knowledge and pursuit of solutions to important societal challenges. Typically, research occurs within specific institutions where data are generated and subsequently analyzed. Although collaborative science bringing together multiple institutions is now common, in such collaborations the analytical processing of the data is often performed by individual researchers within the team, with only limited internal oversight and critical analysis of the workflow prior to publication.

View Article and Find Full Text PDF

Gene expression DNA microarrays have been vital for characterizing whole-genome transcriptional profiles. Nevertheless, their effectiveness relies heavily on the accuracy of genome sequences, the annotation of gene structures, and the sequence-dependent performance of individual probes. Currently available gene expression arrays for the malaria parasite Plasmodium falciparum rely on an average of 2 probes per gene, usually positioned near the 3' end of genes; consequently, existing designs are prone to measurement bias and cannot capture complexities such as the occurrence of transcript isoforms arising from alternative splicing or alternative start/ stop sites.

View Article and Find Full Text PDF

The quantitative prediction of transcriptional activity of genes using promoter sequence is fundamental to the engineering of biological systems for industrial purposes and understanding the natural variation in gene expression. To catalyze the development of new algorithms for this purpose, the Dialogue on Reverse Engineering Assessment and Methods (DREAM) organized a community challenge seeking predictive models of promoter activity given normalized promoter activity data for 90 ribosomal protein promoters driving expression of a fluorescent reporter gene. By developing an unbiased modeling approach that performs an iterative search for predictive DNA sequence features using the frequencies of various k-mers, inferred DNA mechanical properties and spatial positions of promoter sequences, we achieved the best performer status in this challenge.

View Article and Find Full Text PDF

Background: Transcriptional responses to small molecules can provide insights into drug mode of action (MOA). The capacity of the human malaria parasite, Plasmodium falciparum, to respond specifically to transcriptional perturbations has been unclear based on past approaches. Here, we present the most extensive profiling to date of the parasite's transcriptional responsiveness to thirty-one chemically and functionally diverse small molecules.

View Article and Find Full Text PDF

The spread of Plasmodium falciparum multidrug resistance highlights the urgency to discover new targets and chemical scaffolds. Unfortunately, lack of experimentally validated functional information about most P. falciparum genes remains a strategic hurdle.

View Article and Find Full Text PDF

There are many challenges and opportunities for Africans in the emerging area of genome medicine. In particular, there is a need for investment in local education using real-world African genetic data sets. Cloud-based computing platforms offer one solution for engaging the next generation of biomedical scientists in tackling disease in Africa, and by extension, the world.

View Article and Find Full Text PDF

Background: The paradigm of resistance evolution to chemotherapeutic agents is that a key coding mutation in a specific gene drives resistance to a particular drug. In the case of resistance to the anti-malarial drug chloroquine (CQ), a specific mutation in the transporter pfcrt is associated with resistance. Here, we apply a series of analytical steps to gene expression data from our lab and leverage 3 independent datasets to identify pfcrt-interacting genes.

View Article and Find Full Text PDF

A fundamental goal of systems biology is to create models that describe relationships between biological components. Networks are an increasingly popular approach to this problem. However, a scientist interested in modeling biological (e.

View Article and Find Full Text PDF

High-throughput techniques have become a primary approach to gathering biological data. These data can be used to explore relationships between genes and guide development of drugs and other research. However, the deluge of data contains an overwhelming amount of unknown information about the organism under study.

View Article and Find Full Text PDF

The Gene Promoter Expression Prediction challenge consisted of predicting gene expression from promoter sequences in a previously unknown experimentally generated data set. The challenge was presented to the community in the framework of the sixth Dialogue for Reverse Engineering Assessments and Methods (DREAM6), a community effort to evaluate the status of systems biology modeling methodologies. Nucleotide-specific promoter activity was obtained by measuring fluorescence from promoter sequences fused upstream of a gene for yellow fluorescence protein and inserted in the same genomic site of yeast Saccharomyces cerevisiae.

View Article and Find Full Text PDF

It is being increasingly recognized that many important phenotypic traits, including various diseases, are governed by a combination of weak genetic effects and their interactions. While the detection of epistatic interactions that involve a non-additive effect of two loci on a quantitative trait is particularly challenging, this interaction type is fundamental for the understanding of genome organization and gene regulation. However, current methods that detect epistatic interactions typically rely on the existence of a strong primary effect, considerably limiting the sensitivity of the search.

View Article and Find Full Text PDF

We augmented existing computationally predicted and experimentally determined interactions with evolutionarily conserved interactions between proteins of the malaria parasite, P. falciparum, and the human host. In a validation step, we found that conserved interacting host-parasite protein pairs were specifically expressed in host tissues where both the parasite and host proteins are known to be active.

View Article and Find Full Text PDF

Background: Complexity and noise in expression quantitative trait loci (eQTL) studies make it difficult to distinguish potential regulatory relationships among the many interactions. The predominant method of identifying eQTLs finds associations that are significant at a genome-wide level. The vast number of statistical tests carried out on these data make false negatives very likely.

View Article and Find Full Text PDF

Background: Elevated parasite biomass in the human red blood cells can lead to increased malaria morbidity. The genes and mechanisms regulating growth and development of Plasmodium falciparum through its erythrocytic cycle are not well understood. We previously showed that strains HB3 and Dd2 diverge in their proliferation rates, and here use quantitative trait loci mapping in 34 progeny from a cross between these parent clones along with integrative bioinformatics to identify genetic loci and candidate genes that control divergences in cell cycle duration.

View Article and Find Full Text PDF

Although maps of intracellular interactions are increasingly well characterized, little is known about large-scale maps of host-pathogen protein interactions. The investigation of host-pathogen interactions can reveal features of pathogenesis and provide a foundation for the development of drugs and disease prevention strategies. A compilation of experimentally verified interactions between HIV-1 and human proteins and a set of HIV-dependency factors (HDF) allowed insights into the topology and intricate interplay between viral and host proteins on a large scale.

View Article and Find Full Text PDF