Publications by authors named "Geoffrey Otto"

House construction is rapidly modernizing across Africa but the potential benefits for human health are poorly understood. We hypothesised that improvements to housing would be associated with reductions in malaria, acute respiratory infection (ARI) and gastrointestinal illness in an area of low malaria endemicity in Uganda. Data were analysed from a cohort study of male and female child and adult residents (n = 531) of 80 randomly-selected households in Nagongera sub-county, followed for 24 months (October 4, 2017 to October 31, 2019).

View Article and Find Full Text PDF

Background: Long lasting insecticide-treated bednets (LLINs) are the most widely used tool for preventing malaria. There has been a plateau in progress in the highest burden African countries since 2015, leading to questions about the effectiveness of LLINs. In this study, remote LLIN use monitors were deployed in a cohort in Eastern Uganda to explore how LLIN use interacts with mosquito exposure.

View Article and Find Full Text PDF

Indoor residual spraying (IRS) and long-lasting insecticide-treated bednets (LLINs) are common tools for reducing malaria transmission. We studied a cohort in Uganda with universal access to LLINs after 5 years of sustained IRS to explore LLIN adherence when malaria transmission has been greatly reduced. Eighty households and 526 individuals in Nagongera, Uganda were followed from October 2017 -October 2019.

View Article and Find Full Text PDF

Background: Over the last two decades, there has been remarkable progress in malaria control in sub-Saharan Africa, due mainly to the massive deployment of long-lasting insecticidal nets and indoor residual spraying. Despite these gains, it is clear that in many situations, additional interventions are needed to further reduce malaria transmission. The World Health Organization (WHO) has promoted the Integrated Vector Management (IVM) approach through its Global Vector Control Response 2017-2030.

View Article and Find Full Text PDF

Background: High tumor mutational burden (TMB) is an emerging biomarker of sensitivity to immune checkpoint inhibitors and has been shown to be more significantly associated with response to PD-1 and PD-L1 blockade immunotherapy than PD-1 or PD-L1 expression, as measured by immunohistochemistry (IHC). The distribution of TMB and the subset of patients with high TMB has not been well characterized in the majority of cancer types.

Methods: In this study, we compare TMB measured by a targeted comprehensive genomic profiling (CGP) assay to TMB measured by exome sequencing and simulate the expected variance in TMB when sequencing less than the whole exome.

View Article and Find Full Text PDF