To identify novel genes responsible for recurrent hydatidiform moles (HMs), we performed exome sequencing on 75 unrelated patients who were negative for mutations in the known genes. We identified biallelic deleterious variants in 6 genes, FOXL2, MAJIN, KASH5, SYCP2, MEIOB, and HFM1, in patients with androgenetic HMs, including a familial case of 3 affected members. Five of these genes are essential for meiosis I, and their deficiencies lead to premature ovarian insufficiency.
View Article and Find Full Text PDFAims: A hydatidiform mole (HM) is classified as complete (CHM) or partial (PHM) based on its morphology and genomic composition. Ancillary techniques are often required to confirm a morphologically suspected PHM diagnosis. This study sought to evaluate the clinical accuracy of PHM diagnosis using morphological assessment supported by dual-colour dual-hapten in situ hybridisation (D-DISH) ploidy determination.
View Article and Find Full Text PDFHydatidiform moles are rare and thus most pathologists and geneticists have little experience with their diagnosis. It is important to promptly and correctly identify hydatidiform moles given that they are premalignant disorders associated with a risk of persistent gestational trophoblastic disease and gestational trophoblastic neoplasia. Improvement in diagnosis can be achieved with uniformization of diagnostic criteria and establishment of algorithms.
View Article and Find Full Text PDFBackground: Gestational trophoblastic disease comprises hydatidiform moles and a rare group of malignancies that derive from trophoblasts. Although there are typical morphological features that may distinguish hydatidiform moles from non-molar products of conception, such features are not always present, especially at early stages of pregnancy. Furthermore, mosaic/chimeric pregnancies and twin pregnancies make pathological diagnosis challenging while trophoblastic tumours can also pose diagnostic problems in terms of their gestational or non-gestational origin.
View Article and Find Full Text PDFEpithelioid trophoblastic tumor (ETT) is a rare malignancy arising from neoplastic proliferation of chorionic-type intermediate trophoblasts. ETT poses significant challenges to clinicians in the diagnosis and treatment and can hence lead to a poor prognosis. We report a unique case of metastatic ETT in a HIV-positive patient.
View Article and Find Full Text PDFFollowing the diagnosis of a paediatric disorder caused by an apparently de novo mutation, a recurrence risk of 1-2% is frequently quoted due to the possibility of parental germline mosaicism; but for any specific couple, this figure is usually incorrect. We present a systematic approach to providing individualized recurrence risk. By combining locus-specific sequencing of multiple tissues to detect occult mosaicism with long-read sequencing to determine the parent-of-origin of the mutation, we show that we can stratify the majority of couples into one of seven discrete categories associated with substantially different risks to future offspring.
View Article and Find Full Text PDFTumours expressing human chorionic gonadotropin (hCG), the majority of which are difficult to biopsy due to their vascularity, have disparate prognoses depending on their origin. As optimal management relies on accurate diagnosis, we aimed to develop a sensitive cell free DNA (cfDNA) assay to non-invasively distinguish between cases of gestational and non-gestational origin. Deep error-corrected Illumina sequencing of 195 common single nucleotide polymorphisms (SNPs) in cfDNA and matched genomic DNA from 36 patients with hCG-secreting tumours (serum hCG 5 to 3,042,881 IU/L) and 7 controls with normal hCG levels (≤4 IU/L) was performed.
View Article and Find Full Text PDFLow-risk gestational trophoblastic neoplasia including choriocarcinoma is often effectively treated with Methotrexate (MTX) as a first line therapy. However, MTX resistance (MTX-R) occurs in at least ≈33% of cases. This can sometimes be salvaged with actinomycin-D but often requires more toxic combination chemotherapy.
View Article and Find Full Text PDFThe abnormal pregnancies complete and partial hydatidiform mole are genetically unusual, being associated with two copies of the paternal genome. Typical complete hydatidiform moles (CHMs) are diploid and androgenetic, while partial hydatidiform moles (PHMs) are diandric triploids. While diagnosis can usually be made on the basis of morphology, ancillary techniques that exploit their unusual genetic origin can be used to facilitate diagnosis.
View Article and Find Full Text PDFSummary: amplimap is a command-line tool to automate the processing and analysis of data from targeted next-generation sequencing experiments with PCR-based amplicons or capture-based enrichment systems. From raw sequencing reads, amplimap generates output such as read alignments, annotated variant calls, target coverage statistics and variant allele counts and frequencies for each target base pair. In addition to its focus on user-friendliness and reproducibility, amplimap supports advanced features such as consensus base calling for read families based on unique molecular identifiers and filtering false positive variant calls caused by amplification of off-target loci.
View Article and Find Full Text PDFStudy Question: What effect does cancer treatment have on levels of spontaneous selfish fibroblast growth factor receptor 2 (FGFR2) point mutations in human sperm?
Summary Answer: Chemotherapy and radiotherapy do not increase levels of spontaneous FGFR2 mutations in sperm but, unexpectedly, highly-sterilizing treatments dramatically reduce the levels of the disease-associated c.755C > G (Apert syndrome) mutation in sperm.
What Is Known Already: Cancer treatments lead to short-term increases in gross DNA damage (chromosomal abnormalities and DNA fragmentation) but the long-term effects, particularly at the single nucleotide resolution level, are poorly understood.
Purpose: To demonstrate the utility of an amplification-free long-read sequencing method to characterize the Fuchs endothelial corneal dystrophy (FECD)-associated intronic TCF4 triplet repeat (CTG18.1).
Methods: We applied an amplification-free method, utilizing the CRISPR/Cas9 system, in combination with PacBio single-molecule real-time (SMRT) long-read sequencing, to study CTG18.
Mosaic mutations present in the germline have important implications for reproductive risk and disease transmission. We previously demonstrated a phenomenon occurring in the male germline, whereby specific mutations arising spontaneously in stem cells (spermatogonia) lead to clonal expansion, resulting in elevated mutation levels in sperm over time. This process, termed "selfish spermatogonial selection," explains the high spontaneous birth prevalence and strong paternal age-effect of disorders such as achondroplasia and Apert, Noonan and Costello syndromes, with direct experimental evidence currently available for specific positions of six genes (, , , , , and ).
View Article and Find Full Text PDFHuman adult spermatogenesis balances spermatogonial stem cell (SSC) self-renewal and differentiation, alongside complex germ cell-niche interactions, to ensure long-term fertility and faithful genome propagation. Here, we performed single-cell RNA sequencing of ~6500 testicular cells from young adults. We found five niche/somatic cell types (Leydig, myoid, Sertoli, endothelial, macrophage), and observed germline-niche interactions and key human-mouse differences.
View Article and Find Full Text PDFHuman adult spermatogonial stem cells (hSSCs) must balance self-renewal and differentiation. To understand how this is achieved, we profiled DNA methylation and open chromatin (ATAC-seq) in SSEA4 hSSCs, analyzed bulk and single-cell RNA transcriptomes (RNA-seq) in SSEA4 hSSCs and differentiating c-KIT spermatogonia, and performed validation studies via immunofluorescence. First, DNA hypomethylation at embryonic developmental genes supports their epigenetic "poising" in hSSCs for future/embryonic expression, while core pluripotency genes (OCT4 and NANOG) were transcriptionally and epigenetically repressed.
View Article and Find Full Text PDFDe novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39-90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers.
View Article and Find Full Text PDFCongenital hereditary endothelial dystrophy 1 (CHED1) and posterior polymorphous corneal dystrophy 1 (PPCD1) are autosomal-dominant corneal endothelial dystrophies that have been genetically mapped to overlapping loci on the short arm of chromosome 20. We combined genetic and genomic approaches to identify the cause of disease in extensive pedigrees comprising over 100 affected individuals. After exclusion of pathogenic coding, splice-site, and copy-number variations, a parallel approach using targeted and whole-genome sequencing facilitated the identification of pathogenic variants in a conserved region of the OVOL2 proximal promoter sequence in the index families (c.
View Article and Find Full Text PDFThe RAS proto-oncogene Harvey rat sarcoma viral oncogene homolog (HRAS) encodes a small GTPase that transduces signals from cell surface receptors to intracellular effectors to control cellular behavior. Although somatic HRAS mutations have been described in many cancers, germline mutations cause Costello syndrome (CS), a congenital disorder associated with predisposition to malignancy. Based on the epidemiology of CS and the occurrence of HRAS mutations in spermatocytic seminoma, we proposed that activating HRAS mutations become enriched in sperm through a process akin to tumorigenesis, termed selfish spermatogonial selection.
View Article and Find Full Text PDFThe dominant congenital disorders Apert syndrome, achondroplasia and multiple endocrine neoplasia-caused by specific missense mutations in the FGFR2, FGFR3 and RET proteins respectively-represent classical examples of paternal age-effect mutation, a class that arises at particularly high frequencies in the sperm of older men. Previous analyses of DNA from randomly selected cadaveric testes showed that the levels of the corresponding FGFR2, FGFR3 and RET mutations exhibit very uneven spatial distributions, with localised hotspots surrounded by large mutation-negative areas. These studies imply that normal testes are mosaic for clusters of mutant cells: these clusters are predicted to have altered growth and signalling properties leading to their clonal expansion (selfish spermatogonial selection), but DNA extraction eliminates the possibility to study such processes at a tissue level.
View Article and Find Full Text PDF