Publications by authors named "Geoffrey Lindeman"

Hormone-receptor-positive (HR) luminal cells largely mediate the response to estrogen and progesterone during mammary gland morphogenesis. However, there remains a lack of consensus on the precise nature of the precursor cells that maintain this essential HR lineage. Here we refine the identification of HR progenitors and demonstrate their unique regenerative capacity compared to mature HR cells.

View Article and Find Full Text PDF
Article Synopsis
  • Venetoclax is a novel drug that improves outcomes for chronic lymphocytic leukemia (CLL) patients, showing that early treatment response can predict long-term success.
  • Researchers used mass cytometry to analyze blood samples from CLL patients and found that venetoclax significantly reduced various CLL cell subpopulations while increasing survival proteins in the remaining cells.
  • The study suggests that CLL cells quickly adapt to therapies through survival signals like the B-cell activating factor (BAFF), indicating that combining treatments might lead to more effective and lasting results.
View Article and Find Full Text PDF

Inhibition of histone lysine acetyltransferases (KATs) KAT6A and KAT6B has shown antitumor activity in estrogen receptor-positive (ER) breast cancer preclinical models. PF-07248144 is a selective catalytic inhibitor of KAT6A and KAT6B. In the present study, we report the safety, pharmacokinetics (PK), pharmacodynamics, efficacy and biomarker results from the first-in-human, phase 1 dose escalation and dose expansion study (n = 107) of PF-07248144 monotherapy and fulvestrant combination in heavily pretreated ER human epidermal growth factor receptor-negative (HER2) metastatic breast cancer (mBC).

View Article and Find Full Text PDF

Breast cancer represents a collection of pathologies with different molecular subtypes, histopathology, risk factors, clinical behavior, and responses to treatment. "Basal-like" breast cancers predominantly lack the receptors for estrogen and progesterone (ER/PR), lack amplification of human epidermal growth factor receptor 2 (HER2) but account for 10-15% of all breast cancers, are largely insensitive to targeted treatment and represent a disproportionate number of metastatic cases and deaths. Analysis of interleukin (IL)-3 and the IL-3 receptor subunits () reveals elevated expression in predominantly the basal-like group.

View Article and Find Full Text PDF

Inheritance of a BRCA2 pathogenic variant conveys a substantial life-time risk of breast cancer. Identification of the cell(s)-of-origin of BRCA2-mutant breast cancer and targetable perturbations that contribute to transformation remains an unmet need for these individuals who frequently undergo prophylactic mastectomy. Using preneoplastic specimens from age-matched, premenopausal females, here we show broad dysregulation across the luminal compartment in BRCA2 tissue, including expansion of aberrant ERBB3 luminal progenitor and mature cells, and the presence of atypical oestrogen receptor (ER)-positive lesions.

View Article and Find Full Text PDF

Although lineage-specific genes have been identified in the mammary gland, little is known about the contribution of the 3D genome organization to gene regulation in the epithelium. Here, we describe the chromatin landscape of the three major epithelial subsets through integration of long- and short-range chromatin interactions, accessibility, histone modifications, and gene expression. While basal genes display exquisite lineage specificity via distal enhancers, luminal-specific genes show widespread promoter priming in basal cells.

View Article and Find Full Text PDF

Novel therapeutic strategies that can effectively combine with immunotherapies are needed in the treatment of triple-negative breast cancer (TNBC). We demonstrate that combined PARP and WEE1 inhibition are synergistic in controlling tumour growth in BRCA1/2 wild-type TNBC preclinical models. The PARP inhibitor (PARPi) olaparib combined with the WEE1 inhibitor (WEE1i) adavosertib triggered increases in anti-tumour immune responses, including STING pathway activation.

View Article and Find Full Text PDF

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer.

View Article and Find Full Text PDF
Article Synopsis
  • A study evaluated the PREDICT v 2.2 tool for predicting the prognosis of breast cancer in patients with BRCA1 and BRCA2 gene variants, using data from over 5,400 carriers across two major cancer research consortia.
  • The PREDICT model showed reasonable effectiveness in distinguishing high-mortality groups for estrogen receptor (ER)-negative breast cancer in BRCA1 carriers, while for BRCA2 carriers, its accuracy was lower and fluctuated based on tumor characteristics.
  • The findings suggest that while PREDICT can aid in management of breast cancer patients, adjustments for BRCA2 status and tumor features are necessary to improve prognosis estimates, particularly for ER-positive cases.
View Article and Find Full Text PDF

Objective: To determine the feasibility of universal genetic testing of women with newly diagnosed breast cancer, to estimate the incidence of pathogenic gene variants and their impact on patient management, and to evaluate patient and clinician acceptance of universal testing.

Design, Setting, Participants: Prospective study of women with invasive or high grade in situ breast cancer and unknown germline status discussed at the Parkville Breast Service (Melbourne) multidisciplinary team meeting. Women were recruited to the pilot (12 June 2020 - 22 March 2021) and expansion phases (17 October 2021 - 8 November 2022) of the Mutational Assessment of newly diagnosed breast cancer using Germline and tumour genomICs (MAGIC) study.

View Article and Find Full Text PDF

Breast cancer remains a leading cause of cancer-related mortality in women, reflecting profound disease heterogeneity, metastasis, and therapeutic resistance. Over the last decade, genomic and transcriptomic data have been integrated on an unprecedented scale and revealed distinct cancer subtypes, critical molecular drivers, clonal evolutionary trajectories, and prognostic signatures. Furthermore, multi-dimensional integration of high-resolution single-cell and spatial technologies has highlighted the importance of the entire breast cancer ecosystem and the presence of distinct cellular "neighborhoods.

View Article and Find Full Text PDF

Venetoclax is an effective treatment for certain blood cancers, such as chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). However, most patients relapse while on venetoclax and further treatment options are limited. Combining venetoclax with immunotherapies is an attractive approach; however, a detailed understanding of how venetoclax treatment impacts normal immune cells in patients is lacking.

View Article and Find Full Text PDF

Purpose: Despite promising activity in hematopoietic malignancies, efficacy of the B-cell lymphoma 2 (BCL2) inhibitor venetoclax in solid tumors is unknown. We report the prespecified VERONICA primary results, a randomized phase II clinical trial evaluating venetoclax and fulvestrant in estrogen receptor (ER)-positive, HER2-negative metastatic breast cancer, post-cyclin-dependent kinase (CDK) 4/6 inhibitor progression.

Patients And Methods: Pre-/postmenopausal females ≥18 years were randomized 1:1 to venetoclax (800 mg orally daily) plus fulvestrant (500 mg intramuscular; cycle 1: days 1 and 15; subsequent 28-day cycles: day 1) or fulvestrant alone.

View Article and Find Full Text PDF

Breast cancer is a common and highly heterogeneous disease. Understanding cellular diversity in the mammary gland and its surrounding micro-environment across different states can provide insight into cancer development in the human breast. Recently, we published a large-scale single-cell RNA expression atlas of the human breast spanning normal, preneoplastic and tumorigenic states.

View Article and Find Full Text PDF

The addition of a CDK4/6 inhibitor to endocrine therapy improves progression-free and overall survival in women with metastatic estrogen receptor-positive breast cancer. In that setting, CDK4/6 inhibitors induce a potent cell-cycle arrest (which may be accompanied by tumor senescence) but fail to induce apoptotic cell death. Venetoclax is a potent inhibitor of BCL2, a pro-survival protein overexpressed in the majority of estrogen receptor-positive cancers.

View Article and Find Full Text PDF

Breast cancer is a heterogeneous disease that comprises multiple histological and molecular subtypes. To gain insight into mutations that drive breast tumorigenesis, we describe a pipeline for the identification and validation of tumor suppressor genes. Based on an in vivo genome-wide CRISPR/Cas9 screen in Trp53 heterozygous mice, we identified tumor suppressor genes that included the scaffold protein Axin1, the protein kinase A regulatory subunit gene Prkar1a, as well as the proof-of-concept genes Pten, Nf1, and Trp53 itself.

View Article and Find Full Text PDF

Bone marrow is a preferred metastatic site for multiple solid tumours and is associated with poor prognosis and significant morbidity. Accumulating evidence indicates that cancer cells colonise specialised niches within the bone marrow to support their long-term propagation, but the precise location and mechanisms that mediate niche interactions are unknown. Using breast cancer as a model of solid tumour metastasis to the bone marrow, we applied large-scale quantitative three-dimensional imaging to characterise temporal changes in the bone marrow microenvironment during disease progression.

View Article and Find Full Text PDF
Article Synopsis
  • Lynch syndrome is a hereditary cancer syndrome linked to mutations in mismatch repair genes, increasing the risk for various cancers, especially colorectal and endometrial cancer, and recently identified as a risk factor for early-onset aggressive prostate cancer.
  • The IMPACT study, an international research project, is evaluating the effectiveness of prostate-specific antigen (PSA) screening among men aged 40-69 with and without these genetic variants to determine the incidence and characteristics of prostate cancer.
  • Initial findings from the first round of PSA screenings indicate differences in prostate cancer detection and characteristics between men with pathogenic variants compared to age-matched controls who do not carry these variants.
View Article and Find Full Text PDF

Background: Heterogeneity within the mouse mammary epithelium and potential lineage relationships have been recently explored by single-cell RNA profiling. To further understand how cellular diversity changes during mammary ontogeny, we profiled single cells from nine different developmental stages spanning late embryogenesis, early postnatal, prepuberty, adult, mid-pregnancy, late-pregnancy, and post-involution, as well as the transcriptomes of micro-dissected terminal end buds (TEBs) and subtending ducts during puberty.

Methods: The single cell transcriptomes of 132,599 mammary epithelial cells from 9 different developmental stages were determined on the 10x Genomics Chromium platform, and integrative analyses were performed to compare specific time points.

View Article and Find Full Text PDF

To examine global changes in breast heterogeneity across different states, we determined the single-cell transcriptomes of > 340,000 cells encompassing normal breast, preneoplastic BRCA1 tissue, the major breast cancer subtypes, and pairs of tumors and involved lymph nodes. Elucidation of the normal breast microenvironment revealed striking changes in the stroma of post-menopausal women. Single-cell profiling of 34 treatment-naive primary tumors, including estrogen receptor (ER) , HER2 , and triple-negative breast cancers, revealed comparable diversity among cancer cells and a discrete subset of cycling cells.

View Article and Find Full Text PDF

Targeting cell division by chemotherapy is a highly effective strategy to treat a wide range of cancers. However, there are limitations of many standard-of-care chemotherapies: undesirable drug toxicity, side-effects, resistance and high cost. New small molecules which kill a wide range of cancer subtypes, with good therapeutic window in vivo, have the potential to complement the current arsenal of anti-cancer agents and deliver improved safety profiles for cancer patients.

View Article and Find Full Text PDF

Multiphoton intravital imaging is essential for understanding cellular behavior and function in vivo. The adipose-rich environment of the mammary gland poses a unique challenge to in vivo microscopy due to light scattering that impedes high-resolution imaging. Here we provide a protocol for high-quality, six-color 3D intravital imaging of regions across the entire mouse mammary gland and associated tissues for several hours while maintaining tissue access for microdissection and labeling.

View Article and Find Full Text PDF

Most breast cancers exhibit low immune infiltration and are unresponsive to immunotherapy. We hypothesized that inhibition of the receptor activator of nuclear factor-κB (RANK) signaling pathway may enhance immune activation. Here we report that loss of RANK signaling in mouse tumor cells increases leukocytes, lymphocytes, and CD8 T cells, and reduces macrophage and neutrophil infiltration.

View Article and Find Full Text PDF