Publications by authors named "Geoffrey Koh"

The differentiation efficiency of human embryonic stem cells (hESCs) into heart muscle cells (cardiomyocytes) is highly sensitive to culture conditions. To elucidate the regulatory mechanisms involved, we investigated hESCs grown on three distinct culture platforms: feeder-free Matrigel, mouse embryonic fibroblast feeders, and Matrigel replated on feeders. At the outset, we profiled and quantified their differentiation efficiency, transcriptome, transcription factor binding sites and DNA-methylation.

View Article and Find Full Text PDF

We report the first investigation of translational efficiency on a global scale, also known as translatome, of a Chinese hamster ovary (CHO) DG44 cell line producing monoclonal antibodies (mAb). The translatome data was generated via combined use of high resolution and streamlined polysome profiling technology and proprietary Nimblegen microarrays probing for more than 13K annotated CHO-specific genes. The distribution of ribosome loading during the exponential growth phase revealed the translational activity corresponding to the maximal growth rate, thus allowing us to identify stably and highly translated genes encoding heterogeneous nuclear ribonucleoproteins (Hnrnpc and Hnrnpa2b1), protein regulator of cytokinesis 1 (Prc1), glucose-6-phosphate dehydrogenase (G6pdh), UTP6 small subunit processome (Utp6) and RuvB-like protein 1 (Ruvbl1) as potential key players for cellular growth.

View Article and Find Full Text PDF

Flux balance analysis (FBA) is a widely used computational method for characterizing and engineering intrinsic cellular metabolism. The increasing number of its successful applications and growing popularity are possibly attributable to the availability of specific software tools for FBA. Each tool has its unique features and limitations with respect to operational environment, user-interface and supported analysis algorithms.

View Article and Find Full Text PDF

Background: It is important to understand the roles of C-type lectins in the immune system due to their ubiquity and diverse range of functions in animal cells. It has been observed that currently confirmed C-type lectins share a highly conserved domain known as the C-type carbohydrate recognition domain (CRD). Using the sequence profile of the CRD, an increasing number of putative C-type lectins have been identified.

View Article and Find Full Text PDF

Rapid cellular growth and multiplication, limited replicative senescence, calibrated sensitivity to apoptosis, and a capacity to differentiate into almost any cell type are major properties that underline the self-renewal capabilities of human pluripotent stem cells (hPSCs). We developed an integrated bioinformatics pipeline to understand the gene regulation and functions involved in maintaining such self-renewal properties of hPSCs compared to matched fibroblasts. An initial genome-wide screening of transcription factor activity using in silico binding-site and gene expression microarray data newly identified E2F as one of major candidate factors, revealing their significant regulation of the transcriptome.

View Article and Find Full Text PDF

TNFα-mediated apoptosis is one of the complex and tightly regulated cellular processes as it involves the activation of both pro- and anti-apoptotic signaling pathways. Thus, it is important to elucidate the molecular players of this process and their dynamics in order to gain an in-depth understanding of the mechanisms underlying apoptosis. To this end, we proposed an integrated model of TNFα-mediated apoptosis pathway in Type I cells, formulated based on the principles of mass action kinetics.

View Article and Find Full Text PDF

The role of fibroblast growth factor-2 (FGF-2) in maintaining undifferentiated human embryonic stem cells (hESC) was investigated using a targeted phosphoproteomics approach to specifically profile tyrosine phosphorylation events following FGF-2 stimulation. A cumulative total number of 735 unique tyrosine phosphorylation sites on 430 proteins were identified, by far the largest inventory to date for hESC. Early signaling events in FGF-2 stimulated hESC were quantitatively monitored using stable isotope dimethyl labeling, resulting in temporal tyrosine phosphorylation profiles of 316 unique phosphotyrosine peptides originating from 188 proteins.

View Article and Find Full Text PDF

It is widely feared that a novel, highly pathogenic, human transmissible influenza virus may evolve that could cause the next global pandemic. Mitigating the spread of such an influenza pandemic would require not only the timely administration of antiviral drugs to those infected, but also the implementation of suitable intervention policies for stunting the spread of the virus. Towards this end, mathematical modelling and simulation studies are crucial as they allow us to evaluate the predicted effectiveness of the various intervention policies before enforcing them.

View Article and Find Full Text PDF

Parameter estimation is a critical problem in modeling biological pathways. It is difficult because of the large number of parameters to be estimated and the limited experimental data available. In this paper, we propose a decompositional approach to parameter estimation.

View Article and Find Full Text PDF