Environ Sci Technol
October 2016
Meeting global climate change mitigation goals will likely require that transportation-related greenhouse gas emissions begin to decline within the next two decades and then continue to fall. A variety of vehicle technologies and fuels are commercially available to consumers today that can reduce the emissions of the transportation sector. Yet what are the best options, and do any suffice to meet climate policy targets? Here, we examine the costs and carbon intensities of 125 light-duty vehicle models on the U.
View Article and Find Full Text PDFCore-shell PbS-CdS quantum dots enhance the peak external quantum efficiency of shortwave-infrared light-emitting devices by up to 50-100-fold (compared with core-only PbS devices). This is more than double the efficiency of previous quantum-dot light-emitting devices operating at wavelengths beyond 1 μm, and results from the passivation of the PbS cores by the CdS shells against in situ photoluminescence quenching.
View Article and Find Full Text PDFWe study the origin of efficiency roll-off (also called "efficiency droop") in colloidal quantum-dot light-emitting diodes through the comparison of quantum-dot (QD) electroluminescence and photoluminescence. We find that an electric-field-induced decrease in QD luminescence efficiency-and not charge leakage or QD charging (Auger recombination)-is responsible for the roll-off behavior, and use the quantum confined Stark effect to accurately predict the external quantum efficiency roll-off of QD light-emitting diodes.
View Article and Find Full Text PDFRetention and diffusion of charge in tris(8-hydroxyquinoline) aluminum (Alq(3)) molecular thin films are investigated by injecting electrons and holes via a biased conductive atomic force microscopy tip into the Alq(3) films. After the charge injection, Kelvin force microscopy measurements reveal minimal changes with time in the spatial extent of the trapped charge domains within Alq(3) films, even for high hole and electron densities of >10(12) cm(-2). We show that this finding is consistent with the very low mobility of charge carriers in Alq(3) thin films (<10(-7) cm(2)/(Vs)) and that it can benefit from the use of Alq(3) films as nanosegmented floating gates in flash memory cells.
View Article and Find Full Text PDF