The need to make more accurate grain demand (GD) forecasting has become a major topic in the current international grain security discussion. Our research aims to improve short-term GD prediction by establishing a multi-factor model that integrates the key factors: shifts in dietary structures, population size and age structure, urbanization, food waste, and the impact of COVID-19. These factors were not considered simultaneously in previous research.
View Article and Find Full Text PDFForecast combination methods reduce the information in a vector of forecasts to a single combined forecast by using a set of combination weights. Although there are several methods, a typical strategy is the use of the simple arithmetic mean to obtain the combined forecast. A priori, the use of this mean could be justified when all the forecasters have had the same performance in the past or when they do not have enough information.
View Article and Find Full Text PDF