The NanoBiT Biochemical Assay (NBBA) was designed as a biochemical format of the NanoBiT cellular assay, aiming to screen weak protein-protein interactions (PPIs) in mammalian cell lysates. Here we present a High Throughput Screening (HTS) application of the NBBA to screen small molecule and fragment libraries to identify compounds that block the interaction of KRAS-G12D with phosphatidylinositol 3-kinase (PI3K) p110α. This interaction promotes PI3K activity, resulting in the promotion of cell growth, proliferation and survival, and is required for tumour initiation and growth in mouse lung cancer models, whilst having little effect on the health of normal adult mice, establishing the significance of the p110α/KRAS interaction as an oncology drug target.
View Article and Find Full Text PDFIdentification of high-quality hit chemical matter is of vital importance to the success of drug discovery campaigns. However, this goal is becoming ever harder to achieve as the targets entering the portfolios of pharmaceutical and biotechnology companies are increasingly trending towards novel and traditionally challenging to drug. This demand has fuelled the development and adoption of numerous new screening approaches, whereby the contemporary hit identification toolbox comprises a growing number of orthogonal and complementary technologies including high-throughput screening, fragment-based ligand design, affinity screening (affinity-selection mass spectrometry, differential scanning fluorimetry, DNA-encoded library screening), as well as increasingly sophisticated computational predictive approaches.
View Article and Find Full Text PDFTargeted protein degradation is an important mechanism carried out by the cellular machinery, one that is gaining momentum as an exploitable strategy for the development of drug-like compounds. Molecules which are able to induce proximity between elusive therapeutic targets of interest and E3 ligases which subsequently leads to proteasomal degradation of the target are beginning to decrease the percentage of the human proteome described as undruggable. Therefore, having the ability to screen for, and understand the mechanism of, such molecules is becoming an increasingly attractive scientific focus.
View Article and Find Full Text PDFThermal unfolding methods, applied in both isolated protein and cell-based settings, are increasingly used to identify and characterize hits during early drug discovery. Technical developments over recent years have facilitated their application in high-throughput approaches, and they now are used more frequently for primary screening. Widespread access to instrumentation and automation, the ability to miniaturize, as well as the capability and capacity to generate the appropriate scale and quality of protein and cell reagents have all played a part in these advances.
View Article and Find Full Text PDFMolecular glues are small molecules, typically smaller than PROTACs, and usually with improved physicochemical properties that aim to stabilise the interaction between two proteins. Most often this approach is used to improve or induce an interaction between the target and an E3 ligase, but other interactions which stabilise interactions to increase activity or to inhibit binding to a natural effector have also been demonstrated. This review will describe the effects of induced proximity, discuss current methods used to identify molecular glues and introduce approaches that could be adapted for molecular glue screening.
View Article and Find Full Text PDFRecently, there has been a change in the types of drug target entering early drug discovery portfolios. A significant increase in the number of challenging targets, or which would have historically been classed as intractable, has been observed. Such targets often have shallow or non-existent ligand-binding sites, can have disordered structures or domains or can be involved in protein-protein or protein-DNA interactions.
View Article and Find Full Text PDFThe cellular thermal shift assay (CETSA®) has increasingly been used in early drug discovery to provide a measure of cellular target engagement. Traditionally, CETSA has been employed for bespoke questions with small to medium throughput and has predominantly been applied during hit validation rather than in hit identification. Using a CETSA screen versus the kinase CRAF, we assessed 3 key questions: (1) technical feasibility - could the CETSA methodology technically be applied at truly high throughput scale? (2) relevance - could hits suitable for further optimisation be identified? (3) reliability - would the approach identify known chemical equity.
View Article and Find Full Text PDFThe bromodomain and extra-terminal (BET) protein BRD4 regulates gene expression via recruitment of transcriptional regulatory complexes to acetylated chromatin. Like other BET proteins, BRD4 contains two bromodomains, BD1 and BD2, that can interact cooperatively with target proteins and designed ligands, with important implications for drug discovery. Here, we used nuclear magnetic resonance (NMR) spectroscopy to study the dynamics and interactions of the isolated bromodomains, as well as the tandem construct including both domains and the intervening linker, and investigated the effects of binding a tetra-acetylated peptide corresponding to the tail of histone 4.
View Article and Find Full Text PDFEnzyme activation remains a largely under-represented and poorly exploited area of drug discovery despite some key literature examples of the successful application of enzyme activators by various mechanisms and their importance in a wide range of therapeutic interventions. Here we describe the background nomenclature, present the current position of this field of drug discovery and discuss the challenges of hit identification for enzyme activation, as well as our perspectives on the approaches needed to overcome these challenges in early drug discovery.
View Article and Find Full Text PDFLarge compound libraries utilised for HTS often include metal contaminated compounds which can interfere with assay signal or target biology, and therefore appear as hits. Pursuit of these compounds can divert considerable time and resource away from more propitious hits, yet there is currently no established method of detecting metal impurities in a rapid and effective manner. Here we describe the development and application of a high-throughput method to identify metal contaminants using acoustic mist ionisation mass spectrometry (AMI-MS).
View Article and Find Full Text PDFChallenged by ageing infrastructure and increasingly demanding screening cascades, AstraZeneca High Throughput Screening department has developed advanced automation systems that can support both current needs and future strategies in drug discovery. Through collaboration with HighRes Biosolutions and other third-party vendors, highly versatile automated modular platforms have been designed. Safety features such as collaborative robots allow enhanced system accessibility, and adaptive scheduling software has improved protocol design and system recovery.
View Article and Find Full Text PDFDysregulation of the epigenome is associated with the onset and progression of several diseases, including cancer, autoimmune, cardiovascular, and neurological disorders. Members from the three families of epigenetic proteins (readers, writers, and erasers) have been shown to be druggable using small-molecule inhibitors. Increasing knowledge of the role of epigenetics in disease and the reversibility of these modifications explain why pharmacological intervention is an attractive strategy for tackling epigenetic-based disease.
View Article and Find Full Text PDFRationale: The protein kinase FGFR1 regulates cellular processes in human development. As over-activity of FGFR1 is implicated with cancer, effective inhibitors are in demand. Type I inhibitors, which bind to the active form of FGFR1, are less effective than type II inhibitors, which bind to the inactive form.
View Article and Find Full Text PDFHigh-throughput assays based on fluorescence polarization (or fluorescence anisotropy) technology have often been employed for primary hit-finding in drug discovery. These binding assays provide a homogeneous format and consistent performance and offer advantages over some other optical methods. Developments in assay design and improvements in fluorescent probes have enabled the application of the technique to even complex biological systems.
View Article and Find Full Text PDFIt is clear from the analysis of the distribution of approved drug targets that enzymes continue to be a major target class for the pharmaceutical industry. The application of high-throughput screens designed to monitor the activity of these enzyme targets, and the ability of test compounds to modulate this activity, is still the predominant hit finding approach in the industry. The widespread use of enzyme activity-based screens has led to the development of several useful guidelines for the development and validation of robust and reliable assays.
View Article and Find Full Text PDFTargeted protein degradation (TPD) is a recent strategy, utilizing the cell's proteostasis machinery to deplete specific proteins. This represents a paradigm shift in early drug discovery, away from occupancy-driven to event-driven mechanisms.Recent efforts have focused on the development of proteolysis-targeting chimeras (PROTACs).
View Article and Find Full Text PDFEnzymes represent a significant proportion of the druggable genome and constitute a rich source of drug targets. Delivery of a successful program for developing a modulator of enzyme activity requires an understanding of the enzyme's mechanism and the mode of interaction of compounds. This allows an understanding of how physiological conditions in disease-relevant cells will affect inhibitor potency.
View Article and Find Full Text PDFA key activity in small-molecule drug discovery is the characterization of compound-target interactions. Surface plasmon resonance (SPR) is a flexible technique for this purpose, with a wide affinity range (micromoles to picomoles), low protein requirements, and the ability to characterize the kinetics of compound binding. However, a key requirement of SPR is the immobilization of the target protein to the surface of the sensor chip.
View Article and Find Full Text PDFPlastic pollution is the accumulation of plastic objects in the Earth's environment and is a global problem of increasing importance. The laboratory and health care industries contribute to this problem by the widely accepted single use of plastics, including microtiter plates used for compound testing. At AstraZeneca, we predict the use of more than 45,000 384-well and more than 11,000 1536-well microtiter plates per year.
View Article and Find Full Text PDFBiophysical methods such as mass spectrometry, surface plasmon resonance, nuclear magnetic resonance, and both differential scanning isothermal titration calorimetry are now well established as key components of the early drug discovery process. These approaches are used successfully for a range of activities, including assay development, primary screening, hit confirmation and detailed mechanistic characterisation of compound binding. Matching the speed, sensitivity and information content of the various techniques to the generation of critical data and information required at each phase of the drug discovery process has been key.
View Article and Find Full Text PDFWe demonstrate that electron-vibration-vibration two-dimensional infrared spectroscopy (EVV 2DIR) can be used to detect the binding of a drug to a target protein-active site. The EVV 2DIR spectrum of the FGFR1 kinase target protein is found to have ∼200 detectable cross-peaks in the spectral region 1250-1750 cm/2600-3400 cm, with additional 63 peaks caused by the addition of a drug, SU5402. Of these 63 new peaks, it is shown that only six are due to protein-drug interactions, with the other 57 being due to vibrational coupling within the drug itself.
View Article and Find Full Text PDFMyelocytomatosis proto-oncogene transcription factor (Myc) is an intrinsically disordered protein with critical roles in cellular homeostasis and neoplastic transformation. It is tightly regulated in the cell, with Myc phosphorylation playing a major role. In addition to the well-described tandem phosphorylation of Thr-52 and Ser-62 in the Myc transactivation domain linked to its degradation, P21 (RAC1)-activated kinase 2 (PAK2)-mediated phosphorylation of serine and threonine residues in the C-terminal basic helix-loop-helix leucine zipper (bHLH-LZ) region regulates Myc transcriptional activity.
View Article and Find Full Text PDF