Synthetic data generation in omics mimics real-world biological data, providing alternatives for training and evaluation of genomic analysis tools, controlling differential expression, and exploring data architecture. We previously developed Precious1GPT, a multimodal transformer trained on transcriptomic and methylation data, along with metadata, for predicting biological age and identifying dual-purpose therapeutic targets potentially implicated in aging and age-associated diseases. In this study, we introduce Precious2GPT, a multimodal architecture that integrates Conditional Diffusion (CDiffusion) and decoder-only Multi-omics Pretrained Transformer (MoPT) models trained on gene expression and DNA methylation data.
View Article and Find Full Text PDFBackground: DNA replication progression can be affected by the presence of physical barriers like the RNA polymerases, leading to replication stress and DNA damage. Nonetheless, we do not know how transcription influences overall DNA replication progression.
Results: To characterize sites where DNA replication forks stall and pause, we establish a genome-wide approach to identify them.
As aging and tumorigenesis are tightly interconnected biological processes, targeting their common underlying driving pathways may induce dual-purpose anti-aging and anti-cancer effects. Our transcriptomic analyses of 16,740 healthy samples demonstrated tissue-specific age-associated gene expression, with most tumor suppressor genes downregulated during aging. Furthermore, a large-scale pan-cancer analysis of 11 solid tumor types (11,303 cases and 4431 control samples) revealed that many cellular processes, such as protein localization, DNA replication, DNA repair, cell cycle, and RNA metabolism, were upregulated in cancer but downregulated in healthy aging tissues, whereas pathways regulating cellular senescence were upregulated in both aging and cancer.
View Article and Find Full Text PDFUterine Corpus Endometrial Carcinoma (UCEC) is one of the major malignant tumors of the female reproductive system. However, there are limitations in the currently available diagnostic approaches for UCEC. Long non-coding RNAs (lncRNAs) play important roles in regulating biological processes as competitive endogenous RNA (ceRNA) in tumors.
View Article and Find Full Text PDFTarget discovery is crucial for the development of innovative therapeutics and diagnostics. However, current approaches often face limitations in efficiency, specificity, and scalability, necessitating the exploration of novel strategies for identifying and validating disease-relevant targets. Advances in natural language processing have provided new avenues for predicting potential therapeutic targets for various diseases.
View Article and Find Full Text PDFIschemic stroke (IS) is the majority of strokes which remain the second leading cause of deaths in the last two decades. Circulating microRNAs (miRNAs) have been suggested as potential diagnostic and therapeutic tools for IS by previous studies analyzing their differential expression. However, inconclusive and controversial conclusions of these results have to be addressed.
View Article and Find Full Text PDFAging (Albany NY)
June 2023
Aging is a complex and multifactorial process that increases the risk of various age-related diseases and there are many aging clocks that can accurately predict chronological age, mortality, and health status. These clocks are disconnected and are rarely fit for therapeutic target discovery. In this study, we propose a novel approach to multimodal aging clock we call Precious1GPT utilizing methylation and transcriptomic data for interpretable age prediction and target discovery developed using a transformer-based model and transfer learning for case-control classification.
View Article and Find Full Text PDFAging (Albany NY)
April 2023
Glioblastoma Multiforme (GBM) is the most aggressive and most common primary malignant brain tumor. The age of GBM patients is considered as one of the disease's negative prognostic factors and the mean age of diagnosis is 62 years. A promising approach to preventing both GBM and aging is to identify new potential therapeutic targets that are associated with both conditions as concurrent drivers.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with ill-defined pathogenesis, calling for urgent developments of new therapeutic regimens. Herein, we applied PandaOmics, an AI-driven target discovery platform, to analyze the expression profiles of central nervous system (CNS) samples (237 cases; 91 controls) from public datasets, and direct iPSC-derived motor neurons (diMNs) (135 cases; 31 controls) from Answer ALS. Seventeen high-confidence and eleven novel therapeutic targets were identified and will be released onto ALS.
View Article and Find Full Text PDFAging biology is a promising and burgeoning research area that can yield dual-purpose pathways and protein targets that may impact multiple diseases, while retarding or possibly even reversing age-associated processes. One widely used approach to classify a multiplicity of mechanisms driving the aging process is the hallmarks of aging. In addition to the classic nine hallmarks of aging, processes such as extracellular matrix stiffness, chronic inflammation and activation of retrotransposons are also often considered, given their strong association with aging.
View Article and Find Full Text PDF