Accurate historical records of Earth's surface temperatures are central to climate research and policy development. Widely-used estimates based on instrumental measurements from land and sea are, however, not fully consistent at either global or regional scales. To address these challenges, we develop the Dynamically Consistent ENsemble of Temperature (DCENT), a 200-member ensemble of monthly surface temperature anomalies relative to the 1982-2014 climatology.
View Article and Find Full Text PDFSubtropical gyre (STG) depth and strength are controlled by wind stress curl and surface buoyancy forcing. Modern hydrographic data reveal that the STG extends to a depth of about 1 km in the Northwest Atlantic, with its maximum depth defined by the base of the subtropical thermocline. Despite the likelihood of greater wind stress curl and surface buoyancy loss during the Last Glacial Maximum (LGM), previous work suggests minimal change in the depth of the glacial STG.
View Article and Find Full Text PDFInstrumental observations of subsurface ocean warming imply that ocean heat uptake has slowed 20th-century surface warming. We present high-resolution records from subpolar North Atlantic sediments that are consistent with instrumental observations of surface and deep warming/freshening and in addition reconstruct the surface-deep relation of the last 1200 years. Sites from ~1300 meters and deeper suggest an ~0.
View Article and Find Full Text PDFAnn Rev Mar Sci
January 2021
Monitoring Earth's energy imbalance requires monitoring changes in the heat content of the ocean. Recent observational estimates indicate that ocean heat uptake is accelerating in the twenty-first century. Examination of estimates of ocean heat uptake over the industrial era, the Common Era of the last 2,000 years, and the period since the Last Glacial Maximum, 20,000 years ago, permits a wide perspective on modern-day warming rates.
View Article and Find Full Text PDFAntarctic Bottom Water (AABW) is the coldest, densest, most prolific water mass in the global ocean. AABW forms at several distinct regions along the Antarctic coast and feeds into the bottom limb of the meridional overturning circulation, filling most of the global deep ocean. AABW has warmed, freshened, and declined in volume around the globe in recent decades, which has implications for the global heat and sea level rise budgets.
View Article and Find Full Text PDF