The enteric nervous system (ENS) is an extensive network of neurons and glia within the wall of the gastrointestinal (GI) tract that regulates many essential GI functions. Consequently, disorders of the ENS due to developmental defects, inflammation, infection, or age-associated neurodegeneration lead to serious neurointestinal diseases. Despite the prevalence and severity of these diseases, effective treatments are lacking as they fail to directly address the underlying pathology.
View Article and Find Full Text PDFBackground: Enteric neuropathies, which result from abnormalities of the enteric nervous system, are associated with significant morbidity and high health-care costs, but current treatments are unsatisfactory. Cell-based therapy offers an innovative approach to replace the absent or abnormal enteric neurons and thereby restore gut function.
Methods: Enteric neuronal stem cells (ENSCs) were isolated from the gastrointestinal tract of Wnt1-Cre;R26tdTomato mice and generated neurospheres (NS).
Am J Physiol Heart Circ Physiol
November 2022
Heart failure with preserved ejection fraction (HFpEF) is defined by increased left ventricular (LV) stiffness, impaired vascular compliance, and fibrosis. Although systemic inflammation, driven by comorbidities, has been proposed to play a key role, the precise pathogenesis remains elusive. To test the hypothesis that inflammation drives endothelial dysfunction in HFpEF, we used cardiosphere-derived cells (CDCs), which reduce inflammation and fibrosis, improving function, structure, and survival in HFpEF rats.
View Article and Find Full Text PDFBackground: Extracellular vesicles (EVs) from heart stromal/progenitor cells modulate innate immunity, with salutary effects in a variety of cardiac disease models. Little is known, however, about the effects of these EVs on adaptive immunity.
Methods: Ex vivo differentiation of naïve CD4 T cells was conducted to assess the effect of EVs on cytokine production and proliferation of Th1, Th2, Th17, and regulatory T (T) cells.
Cardiosphere-derived cell exosomes (CDC) and YF1, a CDC-derived non-coding RNA, elicit therapeutic bioactivity in models of myocardial infarction and hypertensive hypertrophy. Here we tested the hypothesis that YF1, a 56-nucleotide Y RNA fragment, could alleviate cardiomyocyte hypertrophy, inflammation, and fibrosis associated with hypertrophic cardiomyopathy (HCM) in transgenic mice harboring a clinically relevant mutation in cardiac troponin I (cTnI). By quantitative PCR, YF1 was detectable in bone marrow, spleen, liver, and heart 30 min after intravenous (i.
View Article and Find Full Text PDFCell therapy limits ischemic injury following myocardial infarction (MI) by preventing cell death, modulating the immune response, and promoting tissue regeneration. The therapeutic efficacy of cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs) is associated with extracellular vesicle (EV) release. Prior head-to-head comparisons have shown CDCs to be more effective than MSCs in MI models.
View Article and Find Full Text PDFBackground: Although ∼20% of the elderly population develops atrial fibrillation (AF), little is known about the mechanisms. Heart failure with preserved ejection fraction (HFpEF), which is associated with AF, is more common in aged women than in men.
Objective: The purpose of this study was to identify potential mechanisms of AF in an age-related HFpEF model.
Exp Mol Med
December 2019
Mammals, in contrast to urodeles and teleost fish, lose the ability to regenerate their hearts soon after birth. Central to this regenerative response are cardiac macrophages, which comprise a heterogeneous population of cells with origins from the yolk sac, fetal liver, and bone marrow. These cardiac macrophages maintain residency in the myocardium through local proliferation and partial replacement over time by circulating monocytes.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
October 2019
Objective: Extracellular vesicles secreted by cardiosphere-derived cells (CDC) polarize macrophages toward a distinctive phenotype with enhanced phagocytic capacity (M). These changes underlie cardioprotection by CDC and by the parent CDCs, notably attenuating the no-reflow phenomenon following myocardial infarction, but the mechanisms are unclear. Here, we tested the hypothesis that M are especially effective at scavenging debris from dying cells (ie, efferocytosis) to attenuate irreversible damage post-myocardial infarction.
View Article and Find Full Text PDFEnthusiasm for cell therapy for myocardial injury has waned due to equivocal benefits in clinical trials. In an attempt to improve efficacy, we investigated repeated cell therapy and adjunct renal denervation (RDN) as strategies for augmenting cardioprotection with cardiosphere-derived cells (CDCs). We hypothesized that combining CDC post-conditioning with repeated CDC doses or delayed RDN therapy would result in superior function and remodeling.
View Article and Find Full Text PDFSudden death is the most common mode of exodus in patients with heart failure and preserved ejection fraction (HFpEF). Cardiosphere-derived cells (CDCs) reduce inflammation and fibrosis in a rat model of HFpEF, improving diastolic function and prolonging survival. We tested the hypothesis that CDCs decrease ventricular arrhythmias (VAs) and thereby possibly contribute to prolonged survival.
View Article and Find Full Text PDFAcute ischemic stroke is devastating to patients and their families because of few viable therapeutic options to promote recovery after reperfusion windows close. Recent breakthroughs in biotechnology have resulted in a reproducible patented process for the purification of extracellular vesicles (EVs) from human cardiosphere-derived cells (CDCs). Because CDC-EVs have many features potentially beneficial to treat acute ischemic stroke, CDC-EVs were evaluated in an established small-clot rabbit embolic stroke model, where clinically relevant end points were used to assess recovery in a more translational large animal model.
View Article and Find Full Text PDFNewts can regenerate amputated limbs and cardiac tissue, unlike mammals which lack broad regenerative capacity. Several signaling pathways involved in cell proliferation, differentiation and survival during newt tissue regeneration have been elucidated, however the factors that coordinate signaling between cells, as well as the conservation of these factors in other animals, are not well defined. Here we report that media conditioned by newt limb explant cells (A1 cells) protect mammalian cardiomyocytes from oxidative stress-induced apoptosis.
View Article and Find Full Text PDFBackground: Heart failure with preserved ejection fraction (HFpEF) represents approximately half of heart failure, and its incidence continues to increase. The leading cause of mortality in HFpEF is sudden death, but little is known about the underlying mechanisms.
Methods: Dahl salt-sensitive rats were fed a high-salt diet (8% NaCl) from 7 weeks of age to induce HFpEF (n=38).
Background: Cardiosphere-derived cells (CDCs) confer cardioprotection in acute myocardial infarction by distinctive macrophage (Mϕ) polarization. Here we demonstrate that CDC-secreted exosomes (CDC) recapitulate the cardioprotective effects of CDC therapy known as cellular postconditioning.
Methods: Rats and pigs underwent myocardial infarction induced by ischemia/reperfusion before intracoronary infusion of CDC, inert fibroblast exosomes (Fb; control), or vehicle.
Cardiosphere-derived cells (CDCs) reduce myocardial infarct size via secreted extracellular vesicles (CDC-EVs), including exosomes, which alter macrophage polarization. We questioned whether short non-coding RNA species of unknown function within CDC-EVs contribute to cardioprotection. The most abundant RNA species in CDC-EVs is a Y RNA fragment (EV-YF1); its relative abundance in CDC-EVs correlates with CDC potency Fluorescently labeled EV-YF1 is actively transferred from CDCs to target macrophages via CDC-EVs.
View Article and Find Full Text PDFAims: Naturally secreted nanovesicles known as exosomes are required for the regenerative effects of cardiosphere-derived cells (CDCs), and exosomes mimic the benefits of CDCs in rodents. Nevertheless, exosomes have not been studied in a translationally realistic large-animal model. We sought to optimize delivery and assess the efficacy of CDC-secreted exosomes in pig models of acute (AMI) and convalescent myocardial infarction (CMI).
View Article and Find Full Text PDFBackground: A single dose of allogeneic cardiosphere-derived cells (CDCs) improves cardiac function and reduces scarring, and increases viable myocardium in the infarcted rat and pig heart without eliciting a detrimental immune response. Clinical trials using single doses of allogeneic human CDCs are underway. It is unknown whether repeat dosing confers additional benefit or if it elicits an immune response.
View Article and Find Full Text PDFBackground: The pathogenesis of HFpEF is unclear, but fibrosis, inflammation and hypertrophy have been put forth as likely contributors. CDCs are heart-derived cell products with anti-fibrotic and anti-inflammatory properties.
Objectives: We questioned whether allogeneic rat CDCs might be able to decrease manifestations of HFpEF in hypertensive rats.
Background: Infusion of allogeneic cardiosphere-derived cells (allo-CDCs) postreperfusion elicits cardioprotective cellular postconditioning in pigs with acute myocardial infarction. However, the long-term effects of allo-CDCs have not been assessed. We performed a placebo-controlled pivotal study for long-term evaluation, as well as shorter-term mechanistic studies.
View Article and Find Full Text PDFBackground: Cardiosphere-derived cells mediate therapeutic regeneration in patients after myocardial infarction and are undergoing further clinical testing for cardiomyopathy. The beneficial effects of cardiosphere-derived cells are mediated by the secretion of exosomes and possibly other extracellular membrane vesicles (EMVs).
Objectives: This study sought to investigate the effect of cardiosphere-derived EMVs (CSp-EMVs) on fibroblasts in vitro and tested whether priming with CSp-EMVs could confer salutary properties on fibroblasts in vivo.
Ischemic injury in the heart induces an inflammatory cascade that both repairs damage and exacerbates scar tissue formation. Cardiosphere-derived cells (CDCs) are a stem-like population that is derived ex vivo from cardiac biopsies; they confer both cardioprotection and regeneration in acute myocardial infarction (MI). While the regenerative effects of CDCs in chronic settings have been studied extensively, little is known about how CDCs confer the cardioprotective process known as cellular postconditioning.
View Article and Find Full Text PDFCirc Heart Fail
March 2015
Background: Intracoronary delivery of cardiosphere-derived cells (CDCs) has been demonstrated to be safe and effective in porcine and human chronic myocardial infarction. However, intracoronary delivery of CDCs after reperfusion in acute myocardial infarction has never been assessed in a clinically-relevant large animal model. We tested CDCs as adjunctive therapy to reperfusion in a porcine model of myocardial infarction.
View Article and Find Full Text PDF