Publications by authors named "Geoffrey Bingham"

This study investigates the optical information for visual event perception. Events are objects in motion, with properties like shape, weight and surface material influencing the dynamics that shape movements and optics. The progressive transformation of visible textures, known as visual kinaesthetic information, specifies movements and objects.

View Article and Find Full Text PDF

Visually guided reaches are performed in ≈1s. Given unstable feedback control with neural transmission delay, stable visually guided reaching is assumed to require internal feedforward models that generate simulated feedback without delay that combines with actual feedback for stability. We investigated whether stable visually guided reaching requires internal models to handle such delay.

View Article and Find Full Text PDF

The most widely known studies of rhythmic limb coordination showed that frequency strongly affects the stability of some coordinations (e.g. 180° relative phase) but not others (e.

View Article and Find Full Text PDF

Reaches guided using monocular versus binocular vision have been found to be equally fast and accurate only when optical texture was available projected from a support surface across which the reach was performed. We now investigate what property of optical texture elements is used to perceive relative distance: image width, image height, or image shape. Participants performed reaches to match target distances.

View Article and Find Full Text PDF

Gibson formulated an approach to goal-directed behavior using prospective information in the context of visually guided locomotion and manual behavior. The former was Gibson's paradigm case, but it is the rapidity of targeted reaching that has provided the special challenge for stable control. Recent treatments of visually guided reaching assume that internal forward models are required to generate stable behavior given delays caused by neural transmission times.

View Article and Find Full Text PDF

Two groups of participants were trained to be proficient at performing bimanual 90° coordination either at a high (2.5 Hz) or low (0.5 Hz) frequency with both kinesthetic and visual information available.

View Article and Find Full Text PDF

Two rhythmic coordinations, 0° and 180° relative phase, can be performed stably at preferred frequency (~ 1 Hz) without training. Evidence indicates that both 0° and 180° coordination entail detection of the relative direction of movement. At higher frequencies, this yields instability of 180° and spontaneous transition to 0°.

View Article and Find Full Text PDF

We investigated monocular information for the continuous online guidance of reaches-to-grasp and present a dynamical control model thereof. We defined an information variable using optical texture projected from a support surface (i.e.

View Article and Find Full Text PDF

This study investigated the optical information and control strategies used in visually guided braking. In such tasks, drivers exhibit two different braking behaviors: impulsive braking and continuously regulated braking. We designed two experiments involving a simulated braking task to investigate these two behaviors.

View Article and Find Full Text PDF

Information used in visual event perception includes both static image structure projected from opaque object surfaces and dynamic optic flow generated by motion. Events presented in static blurry grayscale displays have been shown to be recognized only when and after presented with optic flow. In this study, we investigate the effects of optic flow and color on identifying blurry events by studying the identification accuracy and eye-movement patterns.

View Article and Find Full Text PDF

Previously, we developed a stratified process for slant perception. First, optical transformations in structure-from-motion (SFM) and stereo were used to derive 3D relief structure (where depth scaling remains arbitrary). Second, with sufficient continuous perspective change (≥45°), a bootstrap process derived 3D similarity structure.

View Article and Find Full Text PDF

Disturbance forces facilitate motor learning, but theoretical explanations for this counterintuitive phenomenon are lacking. Smooth arm movements require predictions (inference) about the force-field associated with a workspace. The Free Energy Principle (FEP) suggests that such 'active inference' is driven by 'surprise'.

View Article and Find Full Text PDF

Lind et al. (Journal of Experimental Psychology: Human Perception and Performance, 40 (1), 83, 2014) proposed a bootstrap process that used right angles on 3D relief structure, viewed over sufficiently large continuous perspective change, to recover the scaling factor for metric shape. Wang, Lind, and Bingham (Journal of Experimental Psychology: Human Perception and Performance, 44(10), 1508-1522, 2018) replicated these results in the case of 3D slant perception.

View Article and Find Full Text PDF

Empirical studies have always shown 3-D slant and shape perception to be inaccurate as a result of relief scaling (an unknown scaling along the depth direction). Wang, Lind, and Bingham (Journal of Experimental Psychology: Human Perception and Performance, 44(10), 1508-1522, 2018) discovered that sufficient relative motion between the observer and 3-D objects in the form of continuous perspective change (≥45°) could enable accurate 3-D slant perception. They attributed this to a bootstrap process (Lind, Lee, Mazanowski, Kountouriotis, & Bingham in Journal of Experimental Psychology: Human Perception and Performance, 40(1), 83, 2014) where the perceiver identifies right angles formed by texture elements and tracks them in the 3-D relief structure through rotation to extrapolate the unknown scaling factor, then used to convert 3-D relief structure to 3-D Euclidean structure.

View Article and Find Full Text PDF

Mon-Williams and Bingham (Exp Brain Res 211(1):145-160, 2011) developed a geometrical affordance model for reaches-to-grasp, and identified a constant scaling relationship, P, between safety margins (SM) and available apertures (SM) that are determined by the sizes of the objects and the individual hands. Bingham et al. (J Exp Psychol Hum Percept Perform 40(4):1542-1550, 2014) extended the model by introducing a dynamical component that scales the geometrical relationship to the stability of the reaching-to-grasp.

View Article and Find Full Text PDF

Previously we developed a method that supports active movement generation to allow practice with improvement of good compliance control in tracing and drawing. We showed that the method allowed children with motor impairments to improve at a 3D tracing task to become as proficient as typically developing children and that the training improved 2D figure copying. In this study, we expanded the training protocol to include a wider variety of ages (5-10-year-olds) and we made the figures traced in training the same as in figure copying, but varied the scale of training and copying figures to assess the generality of learning.

View Article and Find Full Text PDF

Perceived slant has often been characterized as a component of 3D shape perception for polyhedral objects. Like 3D shape, slant is often perceived inaccurately. Lind, Lee, Mazanowski, Kountouriotis, and Bingham (2014) found that 3D shape was perceived accurately with perspective changes ≥ 45°.

View Article and Find Full Text PDF

When we move through rigid environments, surface orientations of static objects do not appear to change. Most studies have investigated the perception of optical slant which is dependent on the perspective of the observer. We investigated the perception of geographical slant, which is invariant across different viewing perspectives, and compared it to optical slant.

View Article and Find Full Text PDF

How is information from different sensory modalities coordinated when learning an action? We tested two hypotheses. The first is that the information is amodal. The second is that the information is modality specific and one modality is used in first learning the action and then is used to teach the other modality.

View Article and Find Full Text PDF

The role of the monocular-flow-based optical variable τ in the perception of the time to contact of approaching objects has been well-studied. There are additional contributions from binocular sources of information, such as changes in disparity over time (CDOT), but these are less understood. We conducted an experiment to determine whether an object's velocity affects which source is most effective for perceiving time to contact.

View Article and Find Full Text PDF

A large proportion of school-aged children exhibit poor drawing and handwriting. This prevalence limits the availability of therapy. We developed an automated method for training improved manual compliance control and relatedly, prospective control of a stylus.

View Article and Find Full Text PDF

The duration of reach-to-grasp movements is influenced by the size of the contact surfaces, such that grasping objects with smaller contact surface areas takes longer. But what is the influence of asymmetric contact surfaces? In Experiment 1a, participants reached-to-lift wooden blocks off a table top, with the contact locations for the thumb and index finger varying in surface size. The time taken to lift the block was driven primarily by the thumb contact surface, which showed a larger effect size for the dependent variable of movement duration than the index finger's contact surface.

View Article and Find Full Text PDF

Events consist of objects in motion. When objects move, their opaque surfaces reflect light and produce both static image structure and dynamic optic flow. The static and dynamic optical information co-specify events.

View Article and Find Full Text PDF

Use of motion to break camouflage extends back to the Cambrian [In the Blink of an Eye: How Vision Sparked the Big Bang of Evolution (New York Basic Books, 2003)]. We investigated the ability to break camouflage and continue to see camouflaged targets after motion stops. This is crucial for the survival of hunting predators.

View Article and Find Full Text PDF

Many studies have shown that rhythmic interlimb coordination involves perception of the coupled limb movements, and different sensory modalities can be used. Using visual displays to inform the coupled bimanual movement, novel bimanual coordination patterns can be learned with practice. A recent study showed that similar learning occurred without vision when a coach provided manual guidance during practice.

View Article and Find Full Text PDF