Publications by authors named "Geoffrey A Lott"

Two-dimensional fluorescence spectroscopy (2D FS) is applied to determine the conformation and femtosecond electronic population transfer in a dimer of magnesium meso tetraphenylporphyrin. The dimers are prepared by self-assembly of the monomer within the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine liposomes. A theoretical framework to describe 2D FS experiments is presented, and a direct comparison is made between the observables of this measurement and those of 2D electronic spectroscopy (2D ES).

View Article and Find Full Text PDF

By applying a phase-modulation fluorescence approach to 2D electronic spectroscopy, we studied the conformation-dependent exciton coupling of a porphyrin dimer embedded in a phospholipid bilayer membrane. Our measurements specify the relative angle and separation between interacting electronic transition dipole moments and thus provide a detailed characterization of dimer conformation. Phase-modulation 2D fluorescence spectroscopy (PM-2D FS) produces 2D spectra with distinct optical features, similar to those obtained using 2D photon-echo spectroscopy.

View Article and Find Full Text PDF

Experiments that optically probe the translational motions and internal conformational transitions of biological macromolecules have the potential to enable mechanistic studies of biochemical processes in living cells. This work presents a novel "phase-selective" approach to fluorescence fluctuation spectroscopy that simultaneously monitors protein conformational transitions and nanometer center-of-mass displacements. Polarization- and intensity-modulated photoexcitation is combined with phase-sensitive signal detection to monitor the collective coordinate fluctuations from a large population of fluorescent molecules (N approximately 10(6)).

View Article and Find Full Text PDF

The kinetics of biomolecular conformational transitions can be studied by two-dimensional (2D) magnetic resonance and optical spectroscopic methods. Here we apply polarization-modulated Fourier imaging correlation spectroscopy (PM-FICS) to demonstrate a new approach to 2D optical spectroscopy. PM-FICS enables measurements of conformational fluctuations of fluorescently labeled macromolecules on a broad range of time scales (10(-3)-10(2) s).

View Article and Find Full Text PDF

Experiments that optically probe the dynamics of intracellular species, including the center-of-mass displacements and internal conformational transitions of biological macromolecules, have the potential to study mechanisms of biochemical processes in living cells. This chapter reviews Fourier imaging correlation spectroscopy (FICS), a novel phase-selective approach to fluorescence fluctuation spectroscopy that measures the collective coordinate fluctuations from a large population of fluorescent species (N approximately 10(6)). In FICS experiments, a spatially modulated optical grating excites a fluorescently labeled sample.

View Article and Find Full Text PDF

Two-dimensional electronic coherence spectroscopy (ECS) is an important method to study the coupling between distinct optical modes of a material system. Such studies often involve excitation using a sequence of phased ultrashort laser pulses. In conventional approaches, the delays between pulse temporal envelopes must be precisely monitored or maintained.

View Article and Find Full Text PDF