Publications by authors named "Geoffrey A Eddinger"

Aberrant tumor necrosis factor-α (TNFα) signaling is associated with many inflammatory diseases. The homotrimeric quaternary structure of TNFα is essential for receptor recognition and signal transduction. Previously, we described an engineered α/β-peptide inhibitor that potently suppresses TNFα activity and resists proteolysis.

View Article and Find Full Text PDF

Aberrant signaling by tumor necrosis factor-α (TNFα) is associated with inflammatory diseases that can be treated with engineered proteins that inhibit binding of this cytokine to cell-surface receptors. Despite these clinical successes, there is considerable interest in the development of smaller antagonists of TNFα-receptor interactions. We describe a new 29-residue α/β-peptide, a molecule that contains three β-amino acid residues and three α-aminoisobutryic acid (Aib) residues, that displays potent inhibition of TNFα binding to TNFα receptor 1 (TNFR1) and rescues cells from TNFα-induced death.

View Article and Find Full Text PDF

Oligomers containing α- and β-amino acid residues (α/β-peptides) have been shown to mimic the α-helical conformation of conventional peptides when the unnatural residues are derived from β -amino acids or cyclic β-amino acids, but the impact of incorporating β residues has received little attention. The effects of β residues on the conformation and recognition behavior of α/β-peptides that mimic an isolated α-helix were investigated. This effort has focused on 26-mers based on the Bim BH3 domain; a set of isomers with identical α/β backbones that differ only in the placement of certain side chains along the backbone (β vs.

View Article and Find Full Text PDF

Peptides can be developed as effective antagonists of protein-protein interactions, but conventional peptides (i.e., oligomers of l-α-amino acids) suffer from significant limitations in vivo.

View Article and Find Full Text PDF

The synthesis and structural characterization of hybrid α/γ-peptides resulting from a 1:1 α→γ residue substitution at cross-strand positions in a hairpin-forming α-peptide sequence are described. Cyclically constrained γ-residues based on 1,3-substituted cyclohexane or benzene scaffolds support a native-like hairpin fold in aqueous solution, and the unnatural residues stabilize the folded state by ∼0.2 kcal/mol per α→γ substitution.

View Article and Find Full Text PDF