, the leading cause of antibiotic-associated diarrhoea worldwide, is a genetically diverse species which can metabolise a number of nutrient sources upon colonising a dysbiotic gut environment. Trehalose, a disaccharide sugar consisting of two glucose molecules bonded by an α 1,1-glycosidic bond, has been hypothesised to be involved in the emergence of hypervirulence due to its increased utilisation by the RT027 and RT078 strains. Here, growth in trehalose as the sole carbon source was shown to be non-uniform across representative strains, even though the genes for its metabolism were induced.
View Article and Find Full Text PDFA new species of , a Gram-positive, spore-forming anaerobic group, proposed name sp. nov., was isolated in Northern Ireland from bovine faeces collected in 2016.
View Article and Find Full Text PDFClostridioides difficile (C. difficile) is an opportunistic pathogen that leads to antibiotic-associated diarrhoea and is a leading cause of morbidity and mortality worldwide. Antibiotic usage is the main risk factor leading to C.
View Article and Find Full Text PDF(basonym ) is a bacterial enteropathogen associated with cases of infection that can result in pseudomembranous colitis, rapid fluid loss, and death. For decades following its isolation, was thought to be a solely nosocomial pathogen, being isolated from individuals undergoing antimicrobial therapy and largely affecting elderly populations. More recently, spores have been identified in the broader environment, including in food-producing animals, soil, and food matrices, in both ready-to-eat foods and meat products.
View Article and Find Full Text PDFClostridium difficile virulence is driven primarily by the processes of toxinogenesis and sporulation, however many in vitro experimental systems for studying C. difficile physiology have arguably limited relevance to the human colonic environment. We therefore created a more physiologically-relevant model of the colonic milieu to study gut pathogen biology, incorporating human faecal water (FW) into growth media and assessing the physiological effects of this on C.
View Article and Find Full Text PDFClostridium difficile is a spore forming bacterium and the leading cause of colitis and antibiotic associated diarrhoea in the developed world. Effective recovery of spores, particularly in low numbers, is imperative to obtain accurate prevalence data, due to the low number of spores found within non-clinical samples (<20/ml). Through comparison of C.
View Article and Find Full Text PDFClostridium difficile infection is a growing problem in healthcare settings worldwide and results in a considerable socioeconomic impact. New hypervirulent strains and acquisition of antibiotic resistance exacerbates pathogenesis; however, the survival strategy of C. difficile in the challenging gut environment still remains incompletely understood.
View Article and Find Full Text PDFHealthcare acquired infections (HAI) pose a great threat in hospital settings and environmental contamination can be attributed to the spread of these. De-contamination and, significantly, prevention of re-contamination of the environment could help in preventing/reducing this threat. Goldshield (GS5) is a novel organosilane biocide marketed as a single application product with residual biocidal activity.
View Article and Find Full Text PDFScope: Ileostomy studies provide a unique insight into digestion of food, allowing identification of physiologically relevant dietary phytochemicals and their metabolites important to gut health. We previously reported the consistent increase of components in ileal fluids of ileostomates after consumption of raspberries with use of nontargeted LC-MS techniques and data deconvolution software highlighting two major unknown components (m/z 355 and 679).
Methods And Results: In-depth LC-MS analyses suggested that the ileal m/z 355 components were p-coumaroyl glucarates.
Clostridium difficile is considered to be the most frequent cause of infectious bacterial diarrhoea in hospitals worldwide yet its adaptive ability remains relatively uncharacterised. Here, we used GeLC/MS and the exponentially modified protein abundance index (emPAI) calculation to determine proteomic changes in response to a clinically relevant heat stress. Reproducibility between both biological and technical replicates was good, and a 37°C proteome of 224 proteins was complemented by a 41°C proteome of 202 proteins at a 1% false discovery rate.
View Article and Find Full Text PDFBackground: Inorganic phosphate (Pi) is a critical nutrient for all life and is periodically limiting in marine and freshwater provinces, yet little is understood how organisms acclimate to fluctuations in Pi within their environment. To investigate whole cell adaptation, we grew Synechocystis sp. PCC6803, a model freshwater cyanobacterium, in 3%, and 0.
View Article and Find Full Text PDFClostridium difficile is considered to be one of the most important causes of health care-associated infections worldwide. In order to understand more fully the adaptive response of the organism to stressful conditions, we examined transcriptional changes resulting from a clinically relevant heat stress (41 °C versus 37 °C) in C. difficile strain 630 and identified 341 differentially expressed genes encompassing multiple cellular functional categories.
View Article and Find Full Text PDFClostridium difficile is a serious nosocomial pathogen whose prevalence worldwide is increasing. Postgenomic technologies can now be deployed to develop understanding of the evolution and diversity of this important human pathogen, yet little is known about the adaptive ability of C. difficile.
View Article and Find Full Text PDFMass spectrometry based proteomics is now widely used in the microbial sciences. In conjunction with transcriptomics it has greatly enhanced the field of microbial biology and has provide microbiologists with unparalleled insights into cellular processes and functions. Proteomics allows the dynamic nature of the entire protein network to be mapped providing a deeper understanding of microbial systems, their evolution and role in disease states.
View Article and Find Full Text PDFFEMS Microbiol Lett
November 2010
Clostridium difficile, a Gram-positive spore-forming anaerobe, causes infections in humans ranging from mild diarrhoeal to potentially life-threatening pseudomembranous colitis. The availability of genomic information for a range of C. difficile strains affords researchers the opportunity to better understand not only the evolution of these organisms but also their basic physiology and biochemistry.
View Article and Find Full Text PDFBackground: Helicobacter mustelae causes gastritis, ulcers and gastric cancer in ferrets and other mustelids. H. mustelae remains the only helicobacter other than H.
View Article and Find Full Text PDFResearch into snake venom components has intensified over the last number of decades, particularly that work directed towards the discovery of novel agents with potential applications in clinical therapy. In the present study we report, for the first time, defined patterns observed in the G-50 chromatographic elution profiles from 30 snake venoms taken from Elapidae and Viperidae families, as well as previously unreported patterns within subfamilies of these snake species. Development of this chromatographic technique thus offers a rapid method for the general classification of snakes within these families as well as providing insights into hitherto uncharacterised trends within the venoms of snake subfamilies that have opened new avenues for further investigation.
View Article and Find Full Text PDFIt is now more than 10 years since the publication of the first microbial genome sequence and science is now moving towards a post genomic era with transcriptomics and proteomics offering insights into cellular processes and function. The ability to assess the entire protein network of a cell at a given spatial or temporal point will have a profound effect upon microbial science as the function of proteins is inextricably linked to phenotype. Whilst such a situation is still beyond current technologies rapid advances in mass spectrometry, bioinformatics and protein separation technologies have produced a step change in our current proteomic capabilities.
View Article and Find Full Text PDFBackground: The alpha-Proteobacteria are capable of interaction with eukaryotic cells, with some members, such as Ochrobactrum anthropi, capable of acting as human pathogens. O. anthropi has been the cause of a growing number of hospital-acquired infections; however, little is known about its growth, physiology and metabolism.
View Article and Find Full Text PDFProteomics
January 2007
We report the first proteomic analysis of the insoluble sub-proteome of the alkaliphilic and halotolerant deep-sea bacterium Oceanobacillus iheyensis HTE831. A multidimensional gel-based and gel-free analysis was utilised and a total of 4352 peptides were initially identified by automated MS/MS identification software. Automated curation of this list using PROVALT reduced our peptide list to 467 uniquely identified peptides that resulted in the positive identification of 153 proteins.
View Article and Find Full Text PDFWe report the first large-scale gel-free proteomic analysis of the soluble subproteome of the emerging pathogen Ochrobactrum anthropi. Utilizing our robust offline multidimensional protein identification protocol, a total of 57 280 peptides were initially identified utilizing automated MS/MS analysis software. We describe our investigation of the heuristic protein validation tool PROVALT and demonstrate its ability to increase the speed and accuracy of the curation process of large-scale proteomic datasets.
View Article and Find Full Text PDFTo further our understanding of the biology of the thermophilic bacterium Geobacillus thermoleovorans T80, we now report the first proteomic analysis of the insoluble subproteome of this isolate. A combination of both shotgun and multidimensional methodologies were utilized, and a total of 8628 peptides was initially identified by automated MS/MS identification software. Curation of these peptides led to a final list of 184 positive protein identifications.
View Article and Find Full Text PDFA strain of Agromyces fucosus, designated Vs2, metabolized a range of organophosphonate compounds as sole phosphorus sources for growth and metabolized phosphonoacetate as a sole carbon, energy and phosphorus source for growth. With phosphonoacetate as the sole phosphorus source and a pyruvate carbon source, transient phosphate release to the medium was observed, in contrast to cultures grown with glucose and phosphonoacetate, where no phosphate release to the medium was observed. Carbon catabolite repression, specifically by means of inducer exclusion of phosphonoacetate, was proposed as the mechanism responsible, and phosphonoacetate hydrolase enzyme assays carried out on cell extracts confirmed that induced phosphonoacetate hydrolase activities were indeed higher in cells grown on pyruvate with phosphonoacetate as sole phosphorus source.
View Article and Find Full Text PDF