The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms.
View Article and Find Full Text PDFThe International Knockout Mouse Consortium (IKMC) aims to mutate all protein-coding genes in the mouse using a combination of gene targeting and gene trapping in mouse embryonic stem (ES) cells and to make the generated resources readily available to the research community. The IKMC database and web portal (www.knockoutmouse.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2010
Distal lung development occurs through coordinated induction of myofibroblasts, epithelial cells, and capillaries. Lunatic Fringe (Lfng) is a beta(1-3) N-acetylglucosamine transferase that modifies Notch receptors to facilitate their activation by Delta-like (Dll1/4) ligands. Lfng is expressed in the distal lung during saccular development, and deletion of this gene impairs myofibroblast differentiation and alveogenesis in this context.
View Article and Find Full Text PDFMouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers.
View Article and Find Full Text PDF