Maternal experience of abiotic environmental factors such as temperature and light are well known to control seed dormancy in many plant species. Maternal biotic stress alters offspring defence phenotypes, but whether it also affects seed dormancy remains unexplored. We exposed Arabidopsis thaliana plants to herbivory and investigated plasticity in germination and defence phenotypes in their offspring, along with the roles of phytohormone signalling in regulating maternal effects.
View Article and Find Full Text PDFBackground: Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed.
View Article and Find Full Text PDF• Priming of defence is a strategy employed by plants exposed to stress to enhance resistance against future stress episodes with minimal associated costs on growth. Here, we test the hypothesis that application of priming agents to seeds can result in plants with primed defences. • We measured resistance to arthropod herbivores and disease in tomato (Solanum lycopersicum) plants grown from seed treated with jasmonic acid (JA) and/or β-aminobutryric acid (BABA).
View Article and Find Full Text PDFIn mammalian cells sphingosine-1-phosphate (S1P) is a well-established messenger molecule that participates in a wide range of signalling pathways. The objective of the work reported here was to investigate the extent to which phosphorylated long-chain sphingoid bases, such as sphingosine-1-phosphate and phytosphingosine-1-phosphate (phytoS1P) are used in plant cell signalling. To do this, we manipulated Arabidopsis genes capable of metabolizing these messenger molecules.
View Article and Find Full Text PDFStomatal pores of higher plants close in response to decreases in atmospheric relative humidity (RH). This is believed to be a mechanism that prevents the plant from losing excess water when exposed to a dry atmosphere and as such is likely to have been of evolutionary significance during the colonization of terrestrial environments by the embryophytes. We have conducted a genetic screen, based on infrared thermal imaging, to identify Arabidopsis genes involved in the stomatal response to reduced RH.
View Article and Find Full Text PDF