Trials for therapies after an upper limb amputation (ULA) require a focus on the real-world use of the upper limb prosthesis. In this paper, we extend a novel method for identifying upper extremity functional and nonfunctional use to a new patient population: upper limb amputees. We videotaped five amputees and 10 controls performing a series of minimally structured activities while wearing sensors on both wrists that measured linear acceleration and angular velocity.
View Article and Find Full Text PDFBackground And Purpose: Trials of restorative therapies after stroke and clinical rehabilitation require relevant and objective efficacy end points; real-world upper extremity (UE) functional use is an attractive candidate. We present a novel, inexpensive, and feasible method for separating UE functional use from nonfunctional movement after stroke using a single wrist-worn accelerometer.
Methods: Ten controls and 10 individuals with stroke performed a series of minimally structured activities while simultaneously being videotaped and wearing a sensor on each wrist that captured the linear acceleration and angular velocity of their UEs.
Objective: To improve measurement of upper extremity (UE) use in the community by evaluating the feasibility of using body-worn sensor data and machine learning models to distinguish productive prehensile and bimanual UE activity use from extraneous movements associated with walking.
Design: Comparison of machine learning classification models with criterion standard of manually scored videos of performance in UE prosthesis users.
Setting: Rehabilitation hospital training apartment.