Crit Rev Food Sci Nutr
September 2014
Tea is the second most consumed beverage in the world after water and there are numerous reported health benefits as a result of consuming tea, such as reducing the risk of cardiovascular disease and many types of cancer. Thus, there is much interest in the chemical composition of teas, for example; defining components responsible for contributing to reported health benefits; defining quality characteristics such as product flavor; and monitoring for pesticide residues to comply with food safety import/export requirements. Covered in this review are some of the latest developments in mass spectrometry-based analytical techniques for measuring and characterizing low molecular weight components of tea, in particular primary and secondary metabolites.
View Article and Find Full Text PDFOolong tea is a semi-fermented tea that is partially oxidised during the manufacturing process to create a product unique in composition. In this study, we investigated the potential of non-targeted LC-MS with two complementary chromatographic modes to provide a "comprehensive and unbiased" view of biochemical compositional changes occurring during oolong tea manufacturing in New Zealand. Tea leaf samples from throughout the manufacturing/fermentation process during three different harvest periods (spring, summer and autumn) were analysed by four different LC-MS streams.
View Article and Find Full Text PDFFactors such as fermentation methods, geographical origin and season can affect the biochemical composition of tea leaves (Camellia sinensis L.). In this study, the biochemical composition of oolong tea during the manufacturing and fermentation process was studied using a non-targeted method utilising ambient ionisation with a direct analysis in real time (DART) ion source and mass spectrometry (MS).
View Article and Find Full Text PDFTea is the second most consumed beverage in the world and its consumption has been associated with numerous potential health benefits. Factors such as fermentation methods, geographical origin and season can affect the primary and secondary metabolite composition of tea. In this study, a hydrophilic interaction liquid chromatography (HILIC) method coupled to high resolution mass spectrometry in both positive and negative ionisation modes was developed and optimised.
View Article and Find Full Text PDFEpichloë festucae Fl1 in association with Lolium perenne synthesizes a diverse range of indole-diterpene bioprotective metabolites, including lolitrem B, a potent tremorgen. The ltm genes responsible for the synthesis of these metabolites are organized in three clusters at a single sub-telomeric locus in the genome of E. festucae.
View Article and Find Full Text PDFThe proanthocyanidin (PA) chemistry of 12 Lotus species of previously unknown PA content was examined in comparison with agricultural cultivars of L. pedunculatus, L. corniculatus, and L.
View Article and Find Full Text PDF