Publications by authors named "Geo Semini"

spp. are protozoan parasites that cause a spectrum of important diseases in humans. These parasites develop as extracellular promastigotes in the digestive tract of their insect vectors and as obligate intracellular amastigotes that infect macrophages and other phagocytic cells in their vertebrate hosts.

View Article and Find Full Text PDF

Purpose: Previous studies have identified alkyl-phospholipids as promising compounds for cancer therapy by targeting constituents of the cell membrane and different signaling pathways. We previously showed that the alkylphospholipid Inositol-C2-PAF inhibits the proliferation and migration of immortalized keratinocytes and the squamous carcinoma-derived cell line SCC-25. Here, we investigated the effect of this compound on growth and motility as well as its mode of action in mammary carcinoma-derived cell lines.

View Article and Find Full Text PDF

We report the direct probing of the molecular composition of Leishmania-infected macrophage cells in vitro by surface-enhanced Raman scattering (SERS). The microscopic mapping data indicate local abundance and distribution of molecular species that are very characteristic of the infection and that are observed here simultaneously. As revealed by electron microscopy, the gold nanoprobes used for SERS microspectrosopy have access to the parasitophorous vacuoles (PV) through the endosomal system.

View Article and Find Full Text PDF

Intracellular pathogens invade their host cells and replicate within specialized compartments. In turn, the host cell initiates a defensive response trying to kill the invasive agent. As a consequence, intracellular lifestyle implies morphological and physiological changes in both pathogen and host cell.

View Article and Find Full Text PDF

Leishmania spp. are protozoan parasites that are transmitted by sandfly vectors during blood sucking to vertebrate hosts and cause a spectrum of diseases called leishmaniases. It has been demonstrated that host cholesterol plays an important role during Leishmania infection.

View Article and Find Full Text PDF

Synthetic alkylphospholipids (APLs), exhibit similarity to the platelet-activating factor (PAF). These compounds have antiproliferative effects on tumour cells and can therefore be regarded as a new class of drugs. Unlike classic cytostatic agents, synthetic alkylphospholipids do not interfere with the DNA or the mitotic spindle apparatus.

View Article and Find Full Text PDF

In cutaneous inflammatory diseases, such as psoriasis, atopic dermatitis and allergic contact dermatitis, skin-infiltrating T lymphocytes and dendritic cells modulate keratinocyte function via the secretion of pro-inflammatory cytokines. Keratinocytes then produce mediators that recruit and activate immune cells and amplify the inflammatory response. These pathophysiological tissue changes are caused by altered gene expression and the proliferation and maturation of dermal and epidermal cells.

View Article and Find Full Text PDF

Objective: New alkylphospholipids (APLs) that are structurally derived from the platelet-activating factor (PAF) are promising candidates for anticancer treatment. After incorporation into cell membranes, APLs are able to interfere with a wide variety of key enzymes implicated in cell growth, motility, invasion, and apoptosis. In addition to the prototype 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine), we presented a novel group of APLs, the glycosidated phospholipids that efficiently inhibit cell proliferation.

View Article and Find Full Text PDF

Apoptosis is modulated by extrinsic and intrinsic signaling pathways through the formation of the death receptor-mediated death-inducing signaling complex (DISC) and the mitochondrial-derived apoptosome, respectively. Ino-C2-PAF, a novel synthetic phospholipid shows impressive antiproliferative and apoptosis-inducing activity. Little is known about the signaling pathway through which it stimulates apoptosis.

View Article and Find Full Text PDF

New alkyl-phospholipids that are structurally derived from platelet-activating factor are promising candidates for anticancer treatment. The mechanism of action of derivatives of the platelet-activating factor is distinctly different from that of known DNA- or tubulin-targeting anticancer agents because they are incorporated into cell membranes, where they accumulate and interfere with a wide variety of key enzymes. We recently presented evidence of a novel group of alkyl-phospholipids, glycosidated phospholipids that efficiently inhibit cell proliferation.

View Article and Find Full Text PDF

Cell expansion and metastasis are considered hallmarks of tumour progression. Therefore, efforts have been made to develop novel anti-cancer drugs that inhibit both the proliferation and the motility of tumour cells. Synthetic alkylphospholipids, compounds with aliphatic side chains that are ether linked to a glycerol backbone, are structurally derived from platelet-activating factor and represent a new class of drugs with anti-proliferative properties in tumour cells.

View Article and Find Full Text PDF

Bradyrhizobium japonicum, the nitrogen-fixing soybean symbiont, possesses a heme uptake system encoded by the gene cluster hmuVUT-hmuR-exbBD-tonB. Transcription of the divergently oriented hmuT and hmuR genes was previously found to be induced by iron limitation and to depend on a 21-bp promoter-upstream iron control element (ICE). Here, we show by deletion analysis that the full-length ICE is needed for this type of positive control.

View Article and Find Full Text PDF