Worldwide, it is common that the drinking water distribution systems (DWDSs) may be subjected to changes of supply water quality due to the needs of upgrading the treatment processes or switching the source water. However, the potential impacts of quality changed supply water on the stabilized ecological niches within DWDSs and the associated water quality deterioration risks were poorly documented. In the present study, such transition effects caused by changing the supply water quality that resulted from destabilization of biofilm and loose deposits in DWDS were investigated by analyzing the physiochemical and microbiological characteristics of suspended particles before (T), during (T) and after upgrading the treatments (T) in an unchlorinated DWDS in the Netherlands.
View Article and Find Full Text PDFin potable water installations poses a potential health risk, but quantitative information about its replication in biofilms in relation to water quality is scarce. Therefore, biofilm formation on the surfaces of glass and chlorinated polyvinyl chloride (CPVC) in contact with tap water at 34 to 39°C was investigated under controlled hydraulic conditions in a model system inoculated with biofilm-grown The biofilm on glass (average steady-state concentration, 23 ± 9 pg ATP cm) exposed to treated aerobic groundwater (0.3 mg C liter; 1 μg assimilable organic carbon [AOC] liter) did not support growth of the organism, which also disappeared from the biofilm on CPVC (49 ± 9 pg ATP cm) after initial growth.
View Article and Find Full Text PDFTwo unchlorinated drinking water supplies were investigated to assess the potential of water treatment and distribution systems to support the growth of Legionella spp. The treatment plant for supply A distributed treated groundwater with a low concentration (<0.5 ppm of C) of natural organic matter (NOM), and the treatment plant for supply B distributed treated groundwater with a high NOM concentration (8 ppm of C).
View Article and Find Full Text PDFFree-living protozoan communities in water supplies may include hosts for Legionella pneumophila and other undesired bacteria, as well as pathogens. This study aimed at identifying free-living protozoa in two unchlorinated groundwater supplies, using cultivation-independent molecular approaches. For this purpose, samples (<20 degrees C) of treated water, distributed water, and distribution system biofilms were collected from supply A, with a low concentration of natural organic matter (NOM) (<0.
View Article and Find Full Text PDFDrinking water supply companies monitor the presence of Escherichia coli in drinking water to verify the effectiveness of measures that prevent faecal contamination of drinking water. Data are lacking, however, on the sensitivity of the monitoring programmes, as designed under the EU Drinking Water Directive. In this study, the sensitivity of such a monitoring programme was evaluated by hydraulic model simulations of contamination events and calculations of the detection probability of the actual sampling programme of 2002.
View Article and Find Full Text PDFWater utilities in the Netherlands aim at controlling the multiplication of (micro-) organisms by distributing biologically stable water through biologically stable materials. Disinfectant residuals are absent or very low. To be able to assess invertebrate abundance, methods for sampling and quantifying these animals from distribution mains were optimised and evaluated.
View Article and Find Full Text PDF