Publications by authors named "Genying Yu"

The escalation of industrial activities has escalated the production of pharmaceutical and dyeing effluents, raising significant environmental issues. In this investigation, a hybrid approach of Fenton-like reactions and adsorption was used for deep treatment of these effluents, focusing on effects of variables like hydrogen peroxide concentration, catalyst type, pH, reaction duration, temperature, and adsorbent quantity on treatment effectiveness, and the efficacy of acid-modified attapulgite (AMATP) and ferric iron (Fe(III))-loaded AMATP (Fe(III)-AMATP) was examined. Optimal operational conditions were determined, and the possibility of reusing the catalysts was explored.

View Article and Find Full Text PDF

Continuous increasing discharge of industrial oily wastewater and frequent occurrence of oil spill accidents have taken heavy tolls on global environment and human health. Organic-inorganic modifications can fabricate superhydrophilic/submerged superoleophobic membranes for efficient oil-water separation/treatment though they still suffer from complex operation, non-environmental friendliness, expensive cost or uneven distribution. Herein, a new strategy regarding tannic acid (TA)-Ti(IV) coating and CaCO-based biomineralization through simple inkjet printing processes was proposed to modify polyvinylidene fluoride (PVDF) membrane, endowing the membrane with high hydrophilicity (water contact angle (WCA) decreased from 86.

View Article and Find Full Text PDF

While ethylenediamine tetramethylenephosphonic acid (EDTMPA) has been emerged as a stronger chelating agent than ethylene diamine tetraacetic acid (EDTA) for fouling mitigation, and transparent exopolymer particles (TEP) is a major foulant in membrane-based water treatment process, effects of EDTMPA on TEP fouling and the underlying mechanism have been not yet studied. In this study, Flory-Huggins lattice theory was combined with density functional theory (DFT) technology to explore this subject at molecular level. Filtration experiments showed a unimodal pattern of specific filtration resistance (SFR) of TEP sample with Ca concentration in range of 0-3 mM.

View Article and Find Full Text PDF

While transparent exopolymer particles (TEP) is a major foulant, and ethylene diamine tetraacetic acid (EDTA) is a strong chelating agent frequently used for fouling mitigation in membrane-based water treatment processes, little has been known about TEP-associated membrane fouling affected by EDTA. This work was performed to investigate roles of EDTA addition in TEP (Ca-alginate gel was used as a TEP model) associated fouling. It was interestingly found that, TEP had rather high specific filtration resistance (SFR) of 2.

View Article and Find Full Text PDF

Effects of calcium ions and polyaluminum chloride (PACl) on membrane fouling in coagulation-ultrafiltration (UF) process were investigated in this study. Filtration tests demonstrated three interesting filtration behaviors: 1) high specific filtration resistance (SFR) of alginate solution with low CaCl or PACl addition (e. g.

View Article and Find Full Text PDF

While water chemistry (e.g., ionic strength, calcium concentration and organic foulants) is the primary property of surface water, its effects on membrane fouling in process of membrane-based water production and seawater pretreatment have not well investigated.

View Article and Find Full Text PDF

Efficient quantification of interfacial energy related with membrane fouling represents the primary interest in membrane bioreactors (MBRs) as interfacial energy determines foulant layer formation. In this study, radial basis function (RBF) artificial neural networks (ANNs) with five related factors as input variables were applied to quantify interfacial energy with randomly rough membrane surface. It was found that, RBF ANNs could well capture the complex non-linear relationships between the related factors and interfacial energy.

View Article and Find Full Text PDF

It is of great importance to propose effective methods to quantify interfacial interaction since it directly determines foulant adhesion and membrane fouling process in membrane bioreactors (MBRs). This study developed a radial basis function (RBF) artificial neural network (ANN) to predict the interfacial interactions with randomly rough membrane surface. The interaction data quantified by the advanced extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approach were used as the training samples for the RBF networks.

View Article and Find Full Text PDF

Gel layer formation in some cases directly determines membrane fouling extent in membrane bioreactors (MBRs). While hydrogen bonding interactions extensively exist in gelling foulants and sludge suspension, their exact roles in fouling remain unveiled. Filtration results in this study showed that, specific filtration resistance (SFR) of a gel layer formed in the MBR was as high as 2.

View Article and Find Full Text PDF

Impacts of morphologies of both membrane and foulant on interaction energies related with adhesive fouling in a membrane bioreactor (MBR) were explored by thermodynamic analyses. Interaction energies in three possible interaction scenarios regarding different membrane and foulant morphologies under conditions in this study were quantified according to the thermodynamic methods. It was interestingly found that, strength of total interaction between soluble microbial products (SMPs) and rough membrane was over 20,000 times of that between sludge flocs and rough membrane under same conditions, indicating the extremely higher adhesion ability of SMPs than the large particulate foulants.

View Article and Find Full Text PDF

While membrane bioreactor (MBR) technology is generally considered as one of the most promising technologies for wastewater treatment and recovery, membrane fouling remains the major obstacle limiting its applications. Interfacial interactions, which critically determine adhesion process and membrane fouling, were investigated in this study. It was found that, natural membrane surface was of a Gaussian surface obeying Gaussian distribution.

View Article and Find Full Text PDF

In this study, mechanisms and roles of gel elasticity in extremely high specific filtration resistance (SFR) were investigated. It was found that, as compared with cake layer in a membrane bioreactor (MBR), real gel layer in the MBR and agar gel possessed extremely high SFR. Foulant characterization showed that foulants were easy to bind water, and agar gel possessed a network structure.

View Article and Find Full Text PDF

Quantification of interfacial interactions between particles provides a way to regulate the interface behaviors of particles related with adhesion, aggregation, flotation, flocculation, membrane fouling, etc. Existing methods are based on assumptions of smooth particles although real particle surfaces are rather rough. This study proposed a new method to quantify interfacial interactions between two rough particles.

View Article and Find Full Text PDF

Fractal roughness is one of the most important properties of a fractal surface. In this study, it was found that, randomly rough membrane surface was a fractal surface, which could be digitally modeled by a modified two-variable Weierstrass-Mandelbrot (WM) function. Fractal roughness of membrane surfaces has a typical power function relation with the statistical roughness of the modeled surface.

View Article and Find Full Text PDF

This study provided the first attempt of grafting hydrophobic polyvinylidene fluoride (PVDF) membrane with hydrophilic hydroxyethyl acrylate (HEA) monomer via a radiation grafting method. This grafted membrane showed an enhanced hydrophilicity (10° decrease of water contact angle), water content ratio, settling ability and wettability compared to the control membrane. Interestingly, filtration tests showed an improved dependence of water flux of the grafted membrane on the solution pH in the acidic stage.

View Article and Find Full Text PDF

Influences of fractal dimension (D) of membrane surface on interfacial interactions related to membrane fouling in a membrane bioreactor were investigated based on thermodynamic methods. It was found that membrane surface had significant fractal features, and its fractal dimension could be characterized by the power spectrum method. The modified Weierstrass-Mandelbrot (WM) function was found to be effective to model the fractal membrane surface, and higher D corresponded to higher number of fine asperities in the modeled surface.

View Article and Find Full Text PDF

In this study, polyvinylidene fluoride (PVDF) microfiltration membrane was coated by dipping the membrane alternatingly in solutions of the polyelectrolytes (poly-diallyldimethylammonium chloride (PDADMAC) and polystyrenesulfonate (PSS)) via layer-by-layer (LBL) self-assembly technique to improve the membrane antifouling ability. Filtration experiments showed that, sludge cake layer on the coated membrane could be more easily washed off, and moreover, the remained flux ratio (RFR) of the coated membrane was obviously improved as compared with the control membrane. Characterization of the membranes showed that a polyelectrolyte layer was successfully coated on the membrane surfaces, and the hydrophilicity, surface charge and surface morphology of the coated membrane were changed.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0h3sk0rf1l94qhtdc3la76696n87k9pu): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once