Publications by authors named "Genxiang Chen"

The M × N port wavelength-selective switch (WSS) is a crucial device used for Reconfigurable Optical Add/Drop Multiplexors and optical switching nodes in optical communication systems. The primary function of an M × N port WSS is to simultaneously transmit and switch multiple input optical signals from input fiber ports to output fiber ports through spatial light coupling. The port array module in a WSS that is responsible for coupling the spatial beam with the fiber determines the important parameters of the M × N port WSS, such as the number of input/output ports and insertion loss.

View Article and Find Full Text PDF

Wavelength-tunable thulium-doped fiber laser is demonstrated employing a digital micromirror device (DMD) in combination with a fixed grating. The diffraction property of four typical models of DMDs and its steering efficiency for the laser system are analyzed based on two-dimensional grating theory. By spatially modulating reflective patterns on a DMD, the stable, fast, and flexible tuning of lasing wavelength from 1930 nm to 2000 nm is achieved with wavelength tuning accuracy of 0.

View Article and Find Full Text PDF

Optical filters have been adopted in many applications such as reconfigurable telecommunication switches, tunable lasers and spectral imaging. However, most of commercialized filters based on a micro-electrical-mechanical system (MEMS) only provide a minimum bandwidth of 25 GHz in telecom so far. In this work, the programmable filter based on a digital micromirror device (DMD) experimentally demonstrated a minimum bandwidth of 12.

View Article and Find Full Text PDF

The tunable fiber laser with high tuning resolution in the C-band is proposed and demonstrated based on a digital micromirror device (DMD) chip and an echelle grating. The laser employs a DMD as a programmable wavelength filter and an echelle grating with high-resolution features to design a cross-dispersion optical path to achieve high-precision tuning. Experimental results show that wavelength channels with 3 dB-linewidth less than 0.

View Article and Find Full Text PDF

Encapsulation of luminescent perovskite quantum dots (QDs) into a solid matrix has been approved to be an efficient way to improve their stability. In this work, we reported a green encapsulation method to produce ultrastable CHNHPbBr QDs incorporated into the SiO matrix. Specifically, fresh-prepared CHNHPbBr QDs were covalently embedded into silica by an aqueous sol-gel method assisted with CHNHBr, which not only effectively inhibited the water-driven degradation of QDs through surface coordination, but also strongly stabilized the QDs in solid powder via concentration gradient.

View Article and Find Full Text PDF

Sensing of intracellular singlet oxygen (O) is required in order to optimize photodynamic therapy (PDT). An optical nanoprobe is reported here for the optical determination of intracellular O. The probe consists of a porous particle core doped with the commercial O probe 1,3-diphenylisobenzofuran (DPBF) and a layer of poly-L-lysine.

View Article and Find Full Text PDF

Luminescent perovskite quantum dots (QDs) had attracted great attention by virtue of the merits of color-tunable and narrow-band emissions. However, sofar reported perovskite QDs suffered from instability more or less. In this work, a type of silica-coated orthorhombic CHNHPbBr QDs (SiO-QDs) with greatly improved stability was reported.

View Article and Find Full Text PDF

Far Fourier transform infrared spectroscopy (Far-FTIR) and terahertz time-domain spectroscopy (THz-TDS) were used to measure the fingerprint spectra of Azitromycin suspension, capsule, tablet and dispersible tablet under vacuum and nitrogen conditions, respectively. In the frequency range of 0.2-15 THz, highly resolved spectral features for Azitromycin suspension were measured and some minor differences were observed between domestic and exotic Azitromycin Suspension, such as linewidth broadening and additional peaks.

View Article and Find Full Text PDF

Star-like amphiphilic triblock copolymers were rationally designed and synthesized by combining two sequential atom-transfer radical polymerization reactions with a click reaction. Subsequently, a family of uniform magnetic/plasmonic core/shell nanoparticles was crafted by capitalizing on these triblock copolymers as nanoreactors. The diameter of the magnetic core and the thickness of the plasmonic shell could be independently and accurately controlled by varying the molecular weights (i.

View Article and Find Full Text PDF

Based on a digital micromirror device (DMD) processor as the multi-wavelength narrow-band tunable filter, we demonstrate a multi-port tunable fiber laser through experiments. The key property of this laser is that any lasing wavelength channel from any arbitrary output port can be switched independently over the whole C-band, which is only driven by single DMD chip flexibly. All outputs display an excellent tuning capacity and high consistency in the whole C-band with a 0.

View Article and Find Full Text PDF

The optical polarization properties of Al-rich AlGaN/AlN quantum wells (QWs) were investigated using the theoretical model based on the k·p method. Numerical results show that there is valence subband coupling which can influence the peak emission wavelength and emission intensity for TE and TM polarization components from Al-rich AlGaN/AlN QWs. Especially the valence subband coupling could be strong enough when CH1 is close to HH1 and LH1 subbands to modulate the critical Al content switching dominant emissions from TE to TM polarization.

View Article and Find Full Text PDF

The optical polarization properties of staggered AlGaN-AlGaN/AlN quantum wells (QWs) are investigated using the theoretical model based on the k·p method. The numerical results show that the energy level order and coupling relation of the valence subband structure change in the staggered QWs and the trend is beneficial to TE polarized transition compared to that of conventional AlGaN/AlN QWs. As a result, the staggered QWs have much stronger TE-polarized emission than conventional AlGaN-based QWs, which can enhance the surface emission of deep ultraviolet (DUV) light-emitting diodes (LEDs).

View Article and Find Full Text PDF