Although recent evidence suggests that myeloid clonal hematopoiesis (M-CH) may influence lymphoma clinical outcome, its impact in mantle cell lymphoma (MCL) remains unclear. Here, we report a comprehensive NGS-based analysis of the M-CH mutational landscape at baseline and follow-up in patients enrolled in the Fondazione Italiana Linfomi (FIL) MCL0208 phase 3 trial (NCT02354313), evaluating lenalidomide maintenance versus observation after chemoimmunotherapy and autologous stem cell transplantation (ASCT) in untreated young MCL patients. Overall, 254/300 (85%) enrolled patients (median age 57 years [32-66]) had a baseline sample available for CH analysis.
View Article and Find Full Text PDFIntroduction: Pancreatic Ductal Adenocarcinoma (PDA) is one of the most aggressive malignancies with a 5-year survival rate of 13%. Less than 20% of patients have a resectable tumor at diagnosis due to the lack of distinctive symptoms and reliable biomarkers. PDA is resistant to chemotherapy (CT) and understanding how to gain an anti-tumor effector response following stimulation is, therefore, critical for setting up an effective immunotherapy.
View Article and Find Full Text PDFIn the frontline high-dose phase 3 FIL-MCL0208 trial (NCT02354313), 8% of enrolled mantle cell lymphoma (MCL) patients could not be randomised to receive lenalidomide (LEN) maintenance vs observation after autologous stem cell transplantation (ASCT) due to inadequate hematological recovery and 52% of those who started LEN, needed a dose reduction due to toxicity. We therefore focused on the role played by CD34 + hematopoietic stem cells (PBSC) harvesting and reinfusion on toxicity and outcome. Overall, 90% (n = 245) of enrolled patients who underwent the first leukapheresis collected ≥ 4 × 10 PBSC/kg, 2.
View Article and Find Full Text PDFTargeted immunotherapy combinations, including the anti-CD38 monoclonal antibody (MoAb) daratumumab, have shown promising results in patients with relapsed/refractory multiple myeloma (RRMM), leading to a considerable increase in progression-free survival. However, a large fraction of patients inevitably relapse. To understand this, we investigated 32 relapsed MM patients treated with daratumumab, lenalidomide, and dexamethasone (Dara-Rd; NCT03848676).
View Article and Find Full Text PDFAnti-CD38 antibody therapies have transformed multiple myeloma (MM) treatment. However, a large fraction of patients inevitably relapses. To understand this, we investigated 32 relapsed MM patients treated with daratumumab, lenalidomide, and dexamethasone (Dara-Rd; NCT03848676 ).
View Article and Find Full Text PDFBackground: Limited data are available on the concordance between multiparameter flow cytometry (MFC) and next-generation sequencing (NGS) for minimal residual disease (MRD) detection in a large trial for multiple myeloma (MM) patients.
Methods: MRD was explored in the FORTE trial for transplant-eligible MM patients randomised to three carfilzomib-based induction-intensification-consolidation treatments and carfilzomib-lenalidomide (KR) R maintenance. MRD was assessed by 8-colour 2nd-generation flow cytometry in patients with ≥very good partial response before maintenance.
Multiple myeloma (MM) has a highly heterogeneous genetic background, which complicates its molecular tracking over time. Nevertheless, each MM patient's malignant plasma cells (PCs) share unique V(D)J rearranged sequences at immunoglobulin loci, which represent ideal disease biomarkers. Because the tumor-specific V(D)J sequence is highly expressed in bulk RNA in MM patients, we wondered whether it can be identified by single-cell RNA sequencing (scRNA-seq).
View Article and Find Full Text PDFMinimal residual disease (MRD) analysis is a known predictive tool in mantle cell lymphoma (MCL). We describe MRD results from the Fondazione Italiana Linfomi phase 3 MCL0208 prospective clinical trial assessing lenalidomide (LEN) maintenance vs observation after autologous stem cell transplantation (ASCT) in the first prospective comprehensive analysis of different techniques, molecular markers, and tissues (peripheral blood [PB] and bone marrow [BM]), taken at well-defined time points. Among the 300 patients enrolled, a molecular marker was identified in 250 (83%), allowing us to analyze 234 patients and 4351 analytical findings from 10 time points.
View Article and Find Full Text PDFAlthough MRD monitoring by the classic polymerase chain reaction (PCR) approach is a powerful outcome predictor, about 20% of mantle cell lymphoma (MCL) and 50% of follicular lymphoma (FL) patients still lack a molecular marker and are thus resulting not eligible for MRD monitoring. Targeted locus amplification (TLA), a new NGS technology, has been revealed as a feasible marker screening approach able to identify uncommon B-cell leukemia/lymphoma 1 (BCL1) and B-cell leukemia/lymphoma 2 (BCL2) rearrangements in MCL and FL cases defined as having "no marker" by the classic PCR approach.
View Article and Find Full Text PDFBackground: Multicenter clinical trials are producing growing amounts of clinical data. Machine Learning (ML) might facilitate the discovery of novel tools for prognostication and disease-stratification. Taking advantage of a systematic collection of multiple variables, we developed a model derived from data collected on 300 patients with mantle cell lymphoma (MCL) from the Fondazione Italiana Linfomi-MCL0208 phase III trial (NCT02354313).
View Article and Find Full Text PDFCurrent diagnostic standards for lymphoproliferative disorders include multiple tests for detection of clonal immunoglobulin (IG) and/or T-cell receptor (TCR) rearrangements, translocations, copy-number alterations (CNAs), and somatic mutations. The EuroClonality-NGS DNA Capture (EuroClonality-NDC) assay was designed as an integrated tool to characterize these alterations by capturing IGH switch regions along with variable, diversity, and joining genes of all IG and TCR loci in addition to clinically relevant genes for CNA and mutation analysis. Diagnostic performance against standard-of-care clinical testing was assessed in a cohort of 280 B- and T-cell malignancies from 10 European laboratories, including 88 formalin-fixed paraffin-embedded samples and 21 reactive lesions.
View Article and Find Full Text PDFMinimal residual disease (MRD) determined by classic polymerase chain reaction (PCR) methods is a powerful outcome predictor in mantle cell lymphoma (MCL). Nevertheless, some technical pitfalls can reduce the rate of of molecular markers. Therefore, we applied the EuroClonality-NGS IGH (next-generation sequencing immunoglobulin heavy chain) method (previously published in acute lymphoblastic leukaemia) to 20 MCL patients enrolled in an Italian phase III trial sponsored by Fondazione Italiana Linfomi.
View Article and Find Full Text PDFMinimal residual disease (MRD) monitoring by PCR methods is a strong and standardized predictor of clinical outcome in mantle cell lymphoma (MCL) and follicular lymphoma (FL). However, about 20% of MCL and 40% of FL patients lack a reliable molecular marker, being thus not eligible for MRD studies. Recently, targeted locus amplification (TLA), a next-generation sequencing (NGS) method based on the physical proximity of DNA sequences for target selection, identified novel gene rearrangements in leukemia.
View Article and Find Full Text PDFWe analyzed variations in terms of chromosomal abnormalities (CA) by fluorescence in situ hybridization (FISH) analysis on purified bone marrow plasma cells throughout the progression from monoclonal gammopathy of undetermined significance/smoldering multiple myeloma (MGUS/SMM) to newly diagnosed MM/plasma cell leukemia (NDMM/PCL) at diagnosis and from diagnostic samples to progressive disease. High risk was defined by the presence of at least del(17p), t(4;14), and/or t(14;16). 1p/1q detection (in the standard FISH panel from 2012 onward) was not available for all patients.
View Article and Find Full Text PDFMinimal residual disease (MRD) assessment is of high clinical relevance in patients with mantle cell lymphoma (MCL). In mature B-cell malignancies, the presence of somatic hypermutations (SHM) in Variable-Diversity-Joining Heavy chain (VDJH) rearrangements leads to frequent mismatches between primers, probes, and the target, thus impairing tumor cells quantification. Alternative targets, such as immunoglobulin kappa-deleting-element (IGK-Kde) rearrangements, might be suitable for MRD detection.
View Article and Find Full Text PDFPurpose: Duration of first remission is important for the survival of patients with multiple myeloma.
Experimental Design: From the CoMMpass study (NCT01454297), 926 patients with newly diagnosed multiple myeloma, characterized by next-generation sequencing, were analyzed to evaluate those who experienced early progressive disease (PD; time to progression, TTP ≤18 months).
Results: After a median follow-up of 39 months, early PD was detected in 191/926 (20.
Minimal residual disease (MRD) has been increasingly investigated in mantle cell lymphoma (MCL), including for individual therapeutic stratification and pre-emptive treatment in clinical trials. Although patient/allele specific real-time quantitative polymerase chain reaction (qPCR) of IGH or BCL1-IGH clonal markers is the gold-standard method, its reliance on a standard curve for relative quantification limits quantification of low-level positivity within the 1E-4 to 1E-5 range; over half of positive MRD samples after treatment fall below the quantitative range (BQR) of the standard curve. Droplet digital PCR (ddPCR), in contrast, allows absolute quantification, including for samples with no baseline determination of tumor infiltration by multicolor flow cytometry (MFC), avoiding the need for a reference standard curve.
View Article and Find Full Text PDFPersonalized treatment is an attractive strategy that promises increased efficacy with reduced side effects in cancer. The feasibility of such an approach has been greatly boosted by next-generation sequencing (NGS) techniques, which can return detailed information on the genome and on the transcriptome of each patient's tumor, thus highlighting biomarkers of response or druggable targets that may differ from case to case. However, while the number of cancers sequenced is growing exponentially, much fewer cases are amenable to a molecularly-guided treatment outside of clinical trials to date.
View Article and Find Full Text PDFPurpose: Data collection in clinical trials is becoming complex, with a huge number of variables that need to be recorded, verified, and analyzed to effectively measure clinical outcomes. In this study, we used data warehouse (DW) concepts to achieve this goal. A DW was developed to accommodate data from a large clinical trial, including all the characteristics collected.
View Article and Find Full Text PDF