Biomolecular motors are dynamic systems found in organisms with high energy conversion efficiency. FF-ATPase is a rotary biomolecular motor known for its near 100% energy conversion efficiency. It utilizes the synthesis and hydrolysis of ATP to induce conformational changes in motor proteins, thereby converting chemical energy into mechanical motion.
View Article and Find Full Text PDFAs a natural small molecule drug derived from turmeric, curcumin is known for its good biosafety and a range of beneficial effects, including anti-inflammatory, anti-spasmodic, antioxidant, antibacterial, anti-tumor, and neuroprotective effects. Even though, its insolubility in water and instability severely limit its bioavailability and clinical applications. The present study developed a deep eutectic solvent (DES) in oil microemulsion (DES/O-ME) system loaded with Cur for intranasal administration, aiming to enhance both the solubility and permeability of Cur to significantly increase its bioavailability.
View Article and Find Full Text PDFThe clinical application of 7-ethyl hydroxy-camptothecin (SN-38) maintains challenges not only due to its poor solubility and stability but also the lack of effective carriers to actively deliver SN-38 to deep tumor sites. Although SN-38-based nanomedicines could improve the solubility and stability from different aspects, the tumor targeting efficiency remains very low. Leveraging the hypoxic taxis of bifidobacteria bifidum (B.
View Article and Find Full Text PDFMost nanomedicines with suitable sizes (normally 100-200 nm) exhibit favorable accumulation in the periphery of tumors but hardly penetrate into deep tumors. Effective penetration of nanomedicines requires smaller sizes (less than 30 nm) to overcome the elevated tumor interstitial fluid pressure. Moreover, integrating an efficient diagnostic agent in the nanomedicines is in high demand for precision theranostics of tumors.
View Article and Find Full Text PDFDespite the booming progress of anticancer nanomedicines in the past two decades, precise tumor-targetability and sufficient tumor-accumulation are less successful and still require further research. To tackle this challenge, herein we present a biomolecular motor (FF-ATPase)-embedded chromatophore as nanorobot to efficiently overcome biological barriers, and thoroughly investigate its chemotactic motility, tumor-accumulation ability and endocytosis. Chromatophores embedded with FF-ATPase motors were firstly extracted from Thermus thermophilus, then their properties were fully characterized.
View Article and Find Full Text PDFDrug Deliv Transl Res
September 2024
Artemisia argyi, commonly known as wormwood, is a traditional Chinese herbal food and medicine celebrated for its notable antibacterial and anti-inflammatory properties. This study explores a novel delivery method for wormwood, aiming for more convenient and versatile applications. Specifically, we present the first investigation into combining wormwood with microstructures to create a microneedle (MN) patch for wound healing.
View Article and Find Full Text PDFNanodrug delivery systems based on tumor microenvironment responses have shown excellent performance in tumor-targeted therapy, given their unique targeting and drug-release characteristics. Matrix metalloproteinases (MMPs) have been widely explored owing to their high specificity and expression in various tumor microenvironments. The design of an enzyme-sensitive nanodelivery system using MMPs as targeted receptors could markedly improve the performance of drug targeting.
View Article and Find Full Text PDFMultidrug resistance (MDR) is a public health issue of particular concern, for which nanotechnology-based multidrug delivery systems are considered among the most effective suppressive strategies for such resistance in tumors. However, for such strategies to be viable, the notable shortcomings of reduced loading efficiency and uncontrollable drug release ratio need to be addressed. To this end, we developed a novel "multidrug/material" co-delivery system, using d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS, P-gp efflux pump inhibitor) and poly(amidoamine) (PAMAM) to fabricate a precursor material with the properties of reversing MDR and having a long-cycle.
View Article and Find Full Text PDFNano drug delivery systems offer several benefits, including enhancing drug solubility, regulating drug release, prolonging drug circulation time, and minimized toxicity and side effects. However, upon entering the bloodstream, nanoparticles (NPs) encounter a complex biological environment and get absorbed by various biological components, primarily proteins, leading to the formation of a 'Protein Corona'. The formation of the protein corona is affected by the characteristics of NPs, the physiological environment, and experimental design, which in turn affects of the immunotoxicity, specific recognition, cell uptake, and drug release of NPs.
View Article and Find Full Text PDFMicroenvironment regeneration in wound tissue is crucial for wound healing. However, achieving desirable wound microenvironment regeneration involves multiple stages, including hemostasis, inflammation, proliferation, and remodeling. Traditional wound dressings face challenges in fully manipulating all these stages to achieve quick and complete wound healing.
View Article and Find Full Text PDFOral administration is the most commonly used form of treatment due to its advantages, including high patient compliance, convenient administration, and minimal preparation required. However, the traditional preparation process of oral solid preparation has many defects. Although continuous manufacturing line that combined all the unit operations has been developed and preliminarily applied in the pharmaceutical industry, most of the currently used manufacturing processes are still complicated and discontinuous.
View Article and Find Full Text PDFPotent tumor regression remains challenging due to the lack of effective targeted drug delivery into deep tumors as well as the reduced susceptibility of cancer cells to anticancer agents in hypoxic environments. Bacteria-driven drug-delivery systems are promising carriers in overcoming targeting and diffusion limits that are inaccessible for conventional antitumor drugs. In this study, probiotic facultative anaerobe Escherichia coli Nissle 1917 (EcN) was functionalized and formed self-propelled microrobots to actively deliver therapeutic drug and photosensitizer to the deep hypoxic regions of tumors.
View Article and Find Full Text PDFAs an oral mucosal drug delivery system, oral films have been of wide concern in recent years because of their advantages such as rapid absorption, being easy to swallow and avoiding the first-pass effect common for mucoadhesive oral films. However, the currently utilized manufacturing approaches including solvent casting have many limitations, such as solvent residue and difficulties in drying, and are not suitable for personalized customization. To solve these problems, the present study utilizes liquid crystal display (LCD), a photopolymerization-based 3D printing technique, to fabricate mucoadhesive films for oral mucosal drug delivery.
View Article and Find Full Text PDFDespite remarkable progress in the last decade in transdermal microneedle drug delivery systems, great difficulties in precisely manufacturing microneedles with sophisticated microstructures still strongly retard their practical applications. Herein we propose morphology-customized microneedles (spiral, conical, cylindroid, ring-like, arrow-like and tree-like) fabricated by stereolithography (SLA) based 3D-printing technique, and in-depth investigate the correlation between the customized morphologies and the received qualities of the corresponding microneedles such as the mechanical properties and skin penetration behavior, drug loading capacity and the drug release profiles. Results indicated that 3D-printed morphology-customized microneedles not only enhanced the mechanical strength but also improved both drug loading capacity and drug release behavior, which resulted from their highly controllable and 3D-printable morphologies (surface area and volume).
View Article and Find Full Text PDFAims: To establish a FF1-ATP synthase molecular motor biosensor to accurately identify colon cancer miRNAs.
Main Methods: The FF1-ATP synthase molecular motor is extracted by fragmentation-centrifugation and connected to the colon cancer-specific miR-17 capture probe in the manner of the ε subunit-biotin-streptavidin-biotin system. Signal probes are designed for dual-signal characterization to increase detection accuracy.
Tumor microenvironment (TME) plays an important role in the growth, invasion, and metastasis of tumor cells. The pH of TME is more acidic in solid tumors than in normal tissues. Although targeted delivery in TME has progressed, the complex and expensive construction of delivery systems has limited their application.
View Article and Find Full Text PDFThe clinical utility of 7-ethyl-10-hydroxycamptothecin (SN-38) is hampered by its low water solubility and reduced bioactivity at neutral or alkaline conditions. The rational design of an effective drug delivery system that can significantly enhance the therapeutic index of SN-38 and achieve complete tumor regression still remains a challenge. Herein, chitosan-based hybrid nanoparticles system co-loading with chemotherapeutic drug SN-38 and gold nanorods (AuNRs) was engineered for effective combinational photothermal-chemotherapy.
View Article and Find Full Text PDFMicroneedles (MNs) as a novel transdermal drug delivery system have shown great potential for therapeutic and disease diagnosis applications by continually providing minimally invasive, portable, cost-effective, high bioavailability, and easy-to-use tools compared to traditional parenteral administrations. However, microneedle transdermal drug delivery is still in its infancy. Many research studies need further in-depth exploration, such as safety, structural characteristics, and drug loading performance evaluation.
View Article and Find Full Text PDFInt J Biol Macromol
November 2022
Efficient drug loading, tumor targeting, intratumoral penetration, and cellular uptake are the main factors affecting the effectiveness of drug delivery systems in oncotherapy. Based on the tumor microenvironment, we proposed to develop Curcumin (Cur)-loaded matrix metalloproteinase (MMP)-responsive nanoparticles (Cur-P-NPs) by static electricity, to enhance tumor targeting, cellular uptake, and drug loading efficiency. These nanoparticles combine the properties of both PEG-peptides (cleaved peptide + penetrating peptide) and star-shaped polyester (DPE-PCL) nanoparticles.
View Article and Find Full Text PDFNISSLE 1917 (EcN) is a Gram-negative strain with many prominent probiotic properties in the treatment of intestinal diseases such as diarrhea and inflammatory bowel disease (IBD), in particular ulcerative colitis. EcN not only exhibits antagonistic effects on a variety of intestinal pathogenic bacteria, but also regulates the secretion of immune factors and enhances the ability of host immunity. In this review, the mechanisms of EcN in the remission of inflammatory bowel disease are proposed and recent advances on the functionalized EcN are compiled to provide novel therapeutic strategies for the prevention and treatment of IBD.
View Article and Find Full Text PDFDeep eutectic solvents (DESs) have received increasing attention in the past decade owing to their distinguished properties including biocompatibility, tunability, thermal and chemical stability. Particularly, DESs have joined forces in pharmaceutical industry, not only to efficiently separate actives from natural products, but also to dramatically increase solubility and permeability of drugs, both are critical for the drug absorption and efficacy. As a result, lately DESs have been extensively and practically adopted as versatile drug delivery systems for different routes such as nasal, transdermal and oral administration with enhanced bioavailability.
View Article and Find Full Text PDF7-Ethyl-10-hydroxycamptothecin (SN-38) as a potent anti-tumor candidate, suffers the constraints from its poor water solubility, pH-dependent lactone ring stability and the lack of efficient delivery system without losing its activity. Herein, biocompatible superparamagnetic chitosan-based nanocomplexes complexing with water-soluble polymeric prodrug poly(L-glutamic acid)-SN-38 (PGA-SN-38) was engineered for efficient delivery of SN-38. The manufacturing process of colloidal complexes was green, expeditious and facile, with one-shot addition of PGA-SN-38 into chitosan solution without using any organic solvent or surfactant.
View Article and Find Full Text PDFThree-dimensional (3D) printing technology, specifically stereolithography (SLA) technology, has recently created exciting possibilities for the design and fabrication of sophisticated dosages for oral administration, paving a practical way to precisely manufacture customized pharmaceutical dosages with both personalized properties and sustained drug release behavior. However, the sustained drug release achieved in prior studies largely relies on the presence of hydrophilic excipients in the printing formulation, which unfortunately impedes the printability and formability of the corresponding printing formulations. The current study developed and prepared mini-sized oral pellets using the SLA technique and successfully accomplished a hydrophilic excipient-independent drug release behavior.
View Article and Find Full Text PDFIn this study, a micro-molding technology was used to prepare the microneedles (MNs), while a texture analyzer was used to measure its Young's modulus, Poisson's ratio and compression breaking force, to evaluate whether the MNs can penetrate the skin. The effects of different materials were characterized by their ability to withstand stresses using the Structural Mechanics Module of COMSOL Multiphysics. Carboxymethylcellulose (CMC) was chosen as the needle formulation material with varying quantities of polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA) and hyaluronic acid (HA) to adjust the viscosity, brittleness, hardness and solubility of the material.
View Article and Find Full Text PDF