Publications by authors named "Gensdarmes F"

Objective: Our work is focused on tungsten, considered as an emerging contaminant. Its environmental dispersion is partly due to mining and military activities. Exposure scenario can also be occupational, in areas such as the hard metal industry and specific nuclear facilities.

View Article and Find Full Text PDF

This paper addresses the problem of false positive alarm when using a continuous air monitor (CAM) in decommissioning sites of nuclear facilities. CAMs are used to measure airborne activity and play an important role in the radiation protection of workers likely to be exposed to radioactive aerosols. Monitors usually sample aerosols on a membrane filter.

View Article and Find Full Text PDF

The sanitation of concrete structures through dismantling of nuclear buildings is complicated by the radiological threat associated with the airborne release of fine dust. This is the reason why the aerosol release fraction (ARF) associated with mechanical removal of concrete structure containing radioactivity needs to be accurately evaluated to implement efficient radiological survey and containment techniques. We characterize experimentally the ARF resulting from milling operations on a standard non-radioactive concrete slab in a confined experimental chamber using an industrial scarifying machine.

View Article and Find Full Text PDF

Background: Health-risk issues are raised concerning inhalation of particulate pollutants that are thought to have potential hazardous effects on the central nervous system. The brain is presented as a direct target of particulate matter (PM) exposure because of the nose-to-brain pathway involvement. The main cause of contamination in nuclear occupational activities is related to exposure to aerosols containing radionuclides, particularly uranium dust.

View Article and Find Full Text PDF

In the framework of the organization of proficiency testing, filters with deposits of Cs and Sr+Y radioactive aerosols have been submitted to laboratories for radionuclide measurement. Procedures for the special preparation and characterization of filters have been developed. The different steps of filter preparation, determination of the deposited radionuclide activity and characterization of the homogeneity of these deposits are presented.

View Article and Find Full Text PDF

Segregation and radioactive analysis of aerosols according to their aerodynamic size were performed in France, Austria, the Czech Republic, Poland, Germany, and Greece after the arrival of contaminated air masses following the nuclear accident at the Fukushima Dai-ichi nuclear power plant in March 2011. On the whole and regardless of the location, the highest activity levels correspond either to the finest particle fraction or to the upper size class. Regarding anthropogenic radionuclides, the activity median aerodynamic diameter (AMAD) ranged between 0.

View Article and Find Full Text PDF

Experimental results are reported on the resuspension of particles deposited on polymer samples representative of glove boxes used in the nuclear industry, under thermal degradation. A parametric study was carried out on the effects of heat flux, air flow rate, fuel type and particle size distribution. Small-scale experiments were conducted on 10 cm × 10 cm PolyMethyl MethAcrylate (PMMA) and PolyCarbonate (PC) samples covered with aluminium oxide particles with physical geometric diameters of 0.

View Article and Find Full Text PDF

Uranium nanoparticles (<100 nm) can be released into the atmosphere during industrial stages of the nuclear fuel cycle and during remediation and decommissioning of nuclear facilities. Explosions and fires in nuclear reactors and the use of ammunition containing depleted uranium can also produce such aerosols. The risk of accidental inhalation of uranium nanoparticles by nuclear workers, military personnel or civilian populations must therefore be taken into account.

View Article and Find Full Text PDF

Impingement of droplets on surfaces occurs in many industrial and natural processes. The study of droplet break-up is fundamental in order to determine the potential sources of airborne contamination for scenarios of hazardous liquid falls such as dripping. There are very few data in the literature describing the case of impact of millimetre-size droplets.

View Article and Find Full Text PDF

Measuring linear polarization of light scattered by a cloud of particles can help retrieve their physical properties. We present an extensive study of polarimetric measurements of sand grains that can be found on the surface and in the atmosphere of the Earth. Different techniques of measurements are compared using the Laboratoire de Météorologie Physique nephelometer on the ground and the Propriétés Optiques des Grains Astronomiques et Atmosphériques on the ground and in microgravity during parabolic flights.

View Article and Find Full Text PDF