All-inorganic cesium lead halide perovskites possess excellent thermal stability, a feature that renders them highly favorable for optoelectronic applications with an elevated thermal budget. Employing a coevaporation approach for their deposition holds promise for manufacturing at an industrial level, owing to improvements in device scalability and reproducibility. For unlocking the full potential of vacuum-evaporated perovskite thin films, it is crucial to delve deeper into their crystallization process, which, as a solid-state reaction, has been less investigated compared to the crystallization process of, most commonly used, solution-based methods.
View Article and Find Full Text PDFMetal halide perovskite semiconductors hold a strong promise for enabling thin-film laser diodes. Perovskites distinguish themselves from other non-epitaxial media primarily through their ability to maintain performance at high current densities, which is a critical requirement for achieving injection lasing. Coming in a wide range of varieties, numerous perovskites delivered low-threshold optical amplified spontaneous emission and optically pumped lasing when combined with a suitable optical cavity.
View Article and Find Full Text PDFElectrode grids are used in neuroscience research and clinical practice to record electrical activity from the surface of the brain. However, existing passive electrocorticography (ECoG) technologies are unable to offer both high spatial resolution and wide cortical coverage, while ensuring a compact acquisition system. The electrode count and density are restricted by the fact that each electrode must be individually wired.
View Article and Find Full Text PDFThin-film photodiodes (TFPD) monolithically integrated on the Si Read-Out Integrated Circuitry (ROIC) are promising imaging platforms when beyond-silicon optoelectronic properties are required. Although TFPD device performance has improved significantly, the pixel development has been limited in terms of noise characteristics compared to the Si-based image sensors. Here, a thin-film-based pinned photodiode (TF-PPD) structure is presented, showing reduced kTC noise and dark current, accompanied with a high conversion gain (CG).
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
February 2024
In this article, three different implementations of an Axon-Hillock circuit are presented, one of the basic building blocks of spiking neural networks. In this work, we explored the design of such circuits using a unipolar thin-film transistor technology based on amorphous InGaZnO, often used for large-area electronics. All the designed circuits are fabricated by direct material deposition and patterning on top of a flexible polyimide substrate.
View Article and Find Full Text PDFImage sensors are must-have components of most consumer electronics devices. They enable portable camera systems, which find their way into billions of devices annually. Such high volumes are possible thanks to the complementary metal-oxide semiconductor (CMOS) platform, leveraging wafer-scale manufacturing.
View Article and Find Full Text PDFThe next generation of tunable photonics requires highly conductive and light inert interconnects that enable fast switching of phase, amplitude, and polarization modulators without reducing their efficiency. As such, metallic electrodes should be avoided, as they introduce significant parasitic losses. Transparent conductive oxides, on the other hand, offer reduced absorption due to their high bandgap and good conductivity due to their relatively high carrier concentration.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2023
Photoluminescence (PL) measurements are a widely used technique for the investigation of perovskite-based materials and devices. Although electric field-induced PL quenching provides additional useful information, this phenomenon is quite complex and not yet clearly understood. Here, we address the PL quenching of methylammonium lead iodide (MAPbI) perovskite in a light-emitting diode (PeLED) architecture.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2023
We report a high-speed low dark current near-infrared (NIR) organic photodetector (OPD) on a silicon substrate with amorphous indium gallium zinc oxide (a-IGZO) as the electron transport layer (ETL). In-depth understanding of the origin of dark current is obtained using an elaborate set of characterization techniques, including temperature-dependent current-voltage measurements, current-based deep-level transient spectroscopy (Q-DLTS), and transient photovoltage decay measurements. These characterization results are complemented by energy band structures deduced from ultraviolet photoelectron spectroscopy.
View Article and Find Full Text PDFFollowing the rapid increase of organic metal halide perovskites toward commercial application in thin-film solar cells, inorganic alternatives attracted great interest with their potential of longer device lifetime due to the stability improvement under increased temperatures and moisture ingress. Among them, cesium lead iodide (CsPbI) has gained significant attention due to similar electronic and optical properties to methylammonium lead iodide (MAPbI), with a band gap of 1.7 eV, high absorption coefficient, and large diffusion length, while also offering the advantage of being completely inorganic, providing a higher thermal stability and preventing material degradation.
View Article and Find Full Text PDFThin-film organic near-infrared (NIR) photodiodes can be essential building blocks in the rapidly emerging fields including the internet of things and wearable electronics. However, the demonstration of NIR organic photodiodes with not only high responsivity but also low dark current density that is comparable to that of inorganic photodiodes, for example, below 1 nA cm for silicon photodiodes, remains a challenge. In this work, we have demonstrated non-fullerene acceptor-based NIR photodiodes with an ultralow dark current density of 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2020
We propose a method to measure the fundamental parameters that govern diffusion transport in optically thin quantum dot semiconductor films and apply it to quantum dot materials with different ligands. Thin films are excited optically, and the profile of photogenerated carriers is modeled using diffusion-based transport equations and taking into account the optical cavity effects. Correlation with steady-state photoluminescence experiments on different stacks comprising a quenching layer allows the extraction of the carrier diffusion length accurately from the experimental data.
View Article and Find Full Text PDFHighly crystalline thin films of organic semiconductors offer great potential for fundamental material studies as well as for realizing high-performance, low-cost flexible electronics. The fabrication of these films directly on inert substrates is typically done by meniscus-guided coating techniques. The resulting layers show morphological defects that hinder charge transport and induce large device-to-device variability.
View Article and Find Full Text PDFTo grow small molecule semiconductor thin films with domain size larger than modern-day device sizes, we evaporate the material through a dense array of small apertures, called a stencil nanosieve. The aperture size of 0.5 μm results in low nucleation density, whereas the aperture-to-aperture distance of 0.
View Article and Find Full Text PDFThin film transistors based on high-mobility organic semiconductors are prone to contact problems that complicate the interpretation of their electrical characteristics and the extraction of important material parameters such as the charge carrier mobility. Here we report on the gated van der Pauw method for the simple and accurate determination of the electrical characteristics of thin semiconducting films, independently from contact effects. We test our method on thin films of seven high-mobility organic semiconductors of both polarities: device fabrication is fully compatible with common transistor process flows and device measurements deliver consistent and precise values for the charge carrier mobility and threshold voltage in the high-charge carrier density regime that is representative of transistor operation.
View Article and Find Full Text PDFIn this paper, we show that the apparent delocalization of the conduction band reported from first-principles simulations for the high-mobility amorphous oxide semiconductor [Formula: see text] (a-IGZO) is an artifact induced by the periodic conditions imposed to the model. Given a sufficiently large unit-cell dimension (over 40 Å), the conduction band becomes localized. Such a model size is up to four times the size of commonly used models for the study of a-IGZO.
View Article and Find Full Text PDFA model that describes solvent evaporation dynamics in meniscus-guided coating techniques is developed. In combination with a single fitting parameter, it is shown that this formula can accurately predict a processing window for various coating conditions. Organic thin-film transistors (OTFTs), fabricated by a zone-casting setup, indeed show the best performance at the predicted coating speeds with mobilities reaching 7 cm V s .
View Article and Find Full Text PDFTransistor parameter extraction by the conventional transconductance method can lead to a mobility overestimate. Organic transistors undergoing major contact resistance experience a significant drop in mobility upon mild annealing. Before annealing, strong field-dependent contact resistance yields nonlinear transfer curves with locally high transconductances, resulting in a mobility overestimate.
View Article and Find Full Text PDFThe use of non-fullerene acceptors in organic photovoltaic (OPV) devices could lead to enhanced efficiencies due to increased open-circuit voltage (VOC) and improved absorption of solar light. Here we systematically investigate planar heterojunction devices comprising peripherally substituted subphthalocyanines as acceptors and correlate the device performance with the heterojunction energetics. As a result of a balance between VOC and the photocurrent, tuning of the interface energy gap is necessary to optimize the power conversion efficiency in these devices.
View Article and Find Full Text PDFThe Internet of Things is driving extensive efforts to develop intelligent everyday objects. This requires seamless integration of relatively simple electronics, for example through 'stick-on' electronics labels. We believe the future evolution of this technology will be governed by Wright's Law, which was first proposed in 1936 and states that the cost of a product decreases with cumulative production.
View Article and Find Full Text PDFThis study sheds light on the microscopic mechanisms by which self-assembled monolayers (SAMs) determine the onset voltage in organic thin-film transistors (OTFTs). Experiments and modeling are combined to investigate the self-assembly and electrostatic interaction processes in prototypical OTFT structures (SiO2/SAM/pentacene), where alkylated and fluoroalkylated silane SAMs are compared. The results highlight the coverage-dependent impact of the SAM on the density of semiconductor states and enable the rationalization and the control of the OTFT characteristics.
View Article and Find Full Text PDFWhile it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low source-drain fields. Corroborated by scanning Kelvin probe measurements, we explain this observation by the severe difference between local conductivities within grains and at grain boundaries. Redistribution of accumulated charges creates very strong local lateral fields in the latter regions.
View Article and Find Full Text PDF