Publications by authors named "Gennie Parkman"

Aberrant activation of the PI3K-AKT pathway is common in many cancers, including melanoma, and AKT1, 2 and 3 (AKT1-3) are bona fide oncoprotein kinases with well-validated downstream effectors. However, efforts to pharmacologically inhibit AKT have proven to be largely ineffective. In this study, we observed paradoxical effects following either pharmacologic or genetic inhibition of AKT1-3 in melanoma cells.

View Article and Find Full Text PDF

Phosphatidylinositol-3'-kinases (PI3Ks) are a family of lipid kinases that phosphorylate the 3' hydroxyl (OH) of the inositol ring of phosphatidylinositides (PI). Through their downstream effectors, PI3K generated lipids (PI3K-lipids hereafter) such as PI(3,4,5)P and PI(3,4)P regulate myriad biochemical and biological processes in both normal and cancer cells including responses to growth hormones and cytokines; the cell division cycle; cell death; cellular growth; angiogenesis; membrane dynamics; and autophagy and many aspects of cellular metabolism. Engagement of receptor tyrosine kinase by their cognate ligands leads to activation of members of the Class I family of PI3'-kinases (PI3Kα, β, δ & γ) leading to accumulation of PI3K-lipids.

View Article and Find Full Text PDF

Oncolytic viruses (OVs) are being developed as a type of immunotherapy and have demonstrated durable tumor responses and clinical efficacy. One such OV, Coxsackievirus A21 (CVA21), exhibited therapeutic efficacy in early phase clinical trials, demonstrating the ability to infect and kill cancer cells and stimulate anti-tumor immune responses. However, one of the major concerns in using this common cold virus as a therapeutic is the potential for innate and adaptive immune responses to mitigate the benefits of viral infection, particularly in individuals that have been exposed to coxsackievirus prior to treatment.

View Article and Find Full Text PDF

NTRK1 gene fusions are actionable drivers of numerous human malignancies. Here, we show that expression of the TPR-NTRK1 fusion kinase in immortalized mouse pancreatic ductal epithelial (IMPE) (pancreas) or mouse lung epithelial (MLE-12) cells is sufficient to promote rapidly growing tumors in mice. Both tumor models are exquisitely sensitive to targeted inhibition with entrectinib, a tropomyosin-related kinase A (TRKA) inhibitor.

View Article and Find Full Text PDF

Mutational activation of RAC1 is detected in ~7% of cutaneous melanoma, with the most frequent mutation (RAC1 ) encoding for RAC1 . RAC1 is a fast-cycling GTPase that leads to accumulation of RAC1 -GTP, which has potentially pleiotropic regulatory functions in melanoma cell signaling and biology. However, the precise mechanism by which mutationally activated RAC1 propagates its pro-tumorigenic effects remains unclear.

View Article and Find Full Text PDF

Alterations in the PI3K/AKT pathway occur in up to 70% of melanomas and are associated with disease progression. The three AKT paralogs are highly conserved but data suggest they have distinct functions. Activating mutations of AKT1 and AKT3 occur in human melanoma but their role in melanoma formation and metastasis remains unclear.

View Article and Find Full Text PDF

In vitro polymerized type I collagen hydrogels have been used extensively as a model system for three-dimensional (3D) cell and tissue culture, studies of fibrillogenesis, and investigation of multiscale force transmission within connective tissues. The nanoscale organization of collagen fibrils plays an essential role in the mechanics of these gels and emergent cellular behavior in culture, yet quantifying 3D structure with nanoscale resolution to fully characterize fibril organization remains a significant technical challenge. In this study, we demonstrate that a new imaging modality, focused ion beam scanning electron microscopy (FIB-SEM), can be used to generate 3D image datasets for visualizing and quantifying complex nanoscale organization and morphometry in collagen gels.

View Article and Find Full Text PDF