Biophysical models can predict the behavior of cell cultures including 3D cell aggregates (3DCAs), thereby reducing the need for costly and time-consuming experiments. Specifically, mass transfer models enable studying the transport of nutrients, oxygen, signaling molecules, and drugs in 3DCA. These models require the defining of boundary conditions (BC) between the 3DCA and surrounding medium.
View Article and Find Full Text PDFCurrent research on metabolic disorders and diabetes relies on animal models because multi-organ diseases cannot be well studied with standard in vitro assays. Here, we have connected cell models of key metabolic organs, the pancreas and liver, on a microfluidic chip to enable diabetes research in a human-based in vitro system. Aided by mechanistic mathematical modeling, we demonstrate that hyperglycemia and high cortisone concentration induce glucose dysregulation in the pancreas-liver microphysiological system (MPS), mimicking a diabetic phenotype seen in patients with glucocorticoid-induced diabetes.
View Article and Find Full Text PDFBackground & Aims: Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder, characterized by the accumulation of excess fat in the liver, and is a driving factor for various severe liver diseases. These multi-factorial and multi-timescale changes are observed in different clinical studies, but these studies have not been integrated into a unified framework. In this study, we aim to present such a unified framework in the form of a dynamic mathematical model.
View Article and Find Full Text PDFPharmacokinetics (PK) of antisense oligonucleotides (ASOs) is characterized by rapid distribution from plasma to tissue and slow terminal plasma elimination driven by re-distribution from tissue. Quantitative understanding of tissue PK and RNA knockdown for various ASO chemistries, conjugations, and administration routes is critical for successful drug discovery. Here, we report concentration-time and RNA knockdown profiles for a gapmer ASO with locked nucleic acid ribose chemistry in mouse liver, kidney, heart, and lung after subcutaneous and intratracheal administration.
View Article and Find Full Text PDFSingle-stranded antisense oligonucleotides (ASOs) are typically administered subcutaneously once per week or monthly. Less frequent dosing would have strong potential to improve patient convenience and increase adherence and thereby for some diseases result in more optimal therapeutic outcomes. Several technologies are available to provide sustained drug release via subcutaneous (SC) administration.
View Article and Find Full Text PDFBackground: The increased prevalence of insulin resistance is one of the major health risks in society today. Insulin resistance involves both short-term dynamics, such as altered meal responses, and long-term dynamics, such as the development of type 2 diabetes. Insulin resistance also occurs on different physiological levels, ranging from disease phenotypes to organ-organ communication and intracellular signaling.
View Article and Find Full Text PDFSmall-interfering ribonucleic acids (siRNAs) with N-acetylgalactosamine (GalNAc) conjugation for improved liver uptake represent an emerging class of drugs that modulate liver-expressed therapeutic targets. The pharmacokinetics of GalNAc-siRNAs are characterized by a rapid distribution from plasma to tissue (hours) and a long terminal plasma half-life, analyzed in the form of the antisense strand, driven by redistribution from tissue (weeks). Understanding how clinical pharmacokinetics relate to the dose and type of siRNA chemical stabilizing method used is critical, e.
View Article and Find Full Text PDFMicrophysiological systems (MPS) are powerful tools for emulating human physiology and replicating disease progression in vitro. MPS could be better predictors of human outcome than current animal models, but mechanistic interpretation and in vivo extrapolation of the experimental results remain significant challenges. Here, we address these challenges using an integrated experimental-computational approach.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
December 2022
Here, we show model-informed drug development (MIDD) of a novel antisense oligonucleotide, targeting PCSK9 for treatment of hypocholesteremia. The case study exemplifies use of MIDD to analyze emerging data from an ongoing first-in-human study, utility of the US Food and Drug Administration MIDD pilot program to accelerate timelines, innovative use of competitor data to set biomarker targets, and use of MIDD to optimize sample size and dose selection, as well as to accelerate and de-risk a phase IIb study. The focus of the case-study is on the cross-functional collaboration and other key MIDD enablers that are critical to maximize the value of MIDD, rather than the technical application of MIDD.
View Article and Find Full Text PDFToday, there is great interest in diets proposing new combinations of macronutrient compositions and fasting schedules. Unfortunately, there is little consensus regarding the impact of these different diets, since available studies measure different sets of variables in different populations, thus only providing partial, non-connected insights. We lack an approach for integrating all such partial insights into a useful and interconnected big picture.
View Article and Find Full Text PDFSmall interfering RNAs (siRNAs) with -acetylgalactosamine (GalNAc) conjugation for improved liver uptake represent an emerging class of drugs to treat liver diseases. Understanding how pharmacokinetics and pharmacodynamics translate is pivotal for study design and human dose prediction. However, the literature is sparse on translational data for this modality, and pharmacokinetics in the liver is seldom measured.
View Article and Find Full Text PDFDapagliflozin is a sodium-glucose co-transporter 2 (SGLT2) inhibitor used for the treatment of diabetes. This study examines the effects of dapagliflozin on human islets, focusing on alpha and beta cell composition in relation to function in vivo, following treatment of xeno-transplanted diabetic mice. Mouse beta cells were ablated by alloxan, and dapagliflozin was provided in the drinking water while controls received tap water.
View Article and Find Full Text PDFIntroduction: Pharmacologic approaches for promoting angiogenesis have been utilized to accelerate healing of chronic wounds in diabetic patients with varying degrees of success. We hypothesize that the distribution of proangiogenic drugs in the wound area critically impacts the rate of closure of diabetic wounds. To evaluate this hypothesis, we developed a mathematical model that predicts how spatial distribution of VEGF-A produced by delivery of a modified mRNA (AZD8601) accelerates diabetic wound healing.
View Article and Find Full Text PDFStroke is an example of a complex and multi-factorial disease involving multiple organs, timescales, and disease mechanisms. To deal with this complexity, and to realize Precision Medicine of stroke, mathematical models are needed. Such approaches include: 1) machine learning, 2) bioinformatic network models, and 3) mechanistic models.
View Article and Find Full Text PDFDrug properties of antisense oligonucleotides (ASOs) differ significantly from those of traditional small-molecule therapeutics. In this review, we focus on ASO disposition, mainly as characterized by distribution and biotransformation, of nonconjugated and conjugated ASOs. We introduce ASO chemistry to allow the following in-depth discussion on bioanalytical methods and determination of distribution and elimination kinetics at low concentrations over extended periods of time.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
July 2020
Intradermal delivery of AZD8601, an mRNA designed to produce vascular endothelial growth factor A (VEGF-A), has previously been shown to accelerate cutaneous wound healing in a murine diabetic model. Here, we develop population pharmacokinetic and pharmacodynamic models aiming to quantify the effect of AZD8601 injections on the dynamics of wound healing. A dataset of 584 open wound area measurements from 131 mice was integrated from 3 independent studies encompassing different doses, dosing timepoints, and number of doses.
View Article and Find Full Text PDFAims/hypothesis: Inflammatory signals and increased prostaglandin synthesis play a role during the development of diabetes. The prostaglandin D (PGD) receptor, GPR44/DP2, is highly expressed in human islets and activation of the pathway results in impaired insulin secretion. The role of GPR44 activation on islet function and survival rate during chronic hyperglycaemic conditions is not known.
View Article and Find Full Text PDFObjective: Peroxisome proliferator-activated receptors (PPARs) are key transcription factors that regulate adipose development and function, and the conversion of white into brown-like adipocytes. Here we investigated whether PPARα and PPARγ activation synergize to induce the browning of white fat.
Methods: A selection of PPAR activators was tested for their ability to induce the browning of both mouse and human white adipocytes in vitro, and in vivo in lean and obese mice.
The deletion of T-type Ca3.1 channels may reduce high-fat diet (HFD)-induced weight gain, which correlates positively with obesity and endothelial dysfunction. Therefore, experiments were designed to study the involvement of T-type Ca3.
View Article and Find Full Text PDFWe describe tactics to assess pharmacokinetic (PK) and pharmacodynamic (PD) parameters of oligonucleotides. The chapter includes recommendations on the design of single-dose preclinical PK studies, preclinical PKPD studies, and toxicological studies, and on best practice for scaling PK and PD parameters from animal to human. We focus on single-stranded oligonucleotides, but relevant differences to double-stranded RNAs are also addressed.
View Article and Find Full Text PDFKnowledge of the kinetics of the active drug in biophase, that is, at the effect site, is fundamental to select dose and to reason about safety. Unfortunately, the kinetics is cumbersome to measure in vivo. We describe how dose-response-time (DRT) analysis estimates the biophase and the target-response half-lives from data of the circulating protein of the encoded messenger RNA for seven antisense oligonucleotides (ASOs) and four small interfering RNA (siRNA) drugs.
View Article and Find Full Text PDFMathematical models predicting in vivo pharmacodynamic effects from in vitro data can accelerate drug discovery, and reduce costs and animal use. However, data integration and modeling is non-trivial when more than one drug-target receptor is involved in the biological response. We modeled the inhibition of non-esterified fatty acid release by dual G-protein-coupled receptor 81/109A (GPR81/GPR109A) agonists in vivo in the rat, to estimate the in vivo EC values for 12 different compounds.
View Article and Find Full Text PDFPharmaceutical induction of metabolically active beige adipocytes in the normally energy storing white adipose tissue has potential to reduce obesity. Mitochondrial uncoupling in beige adipocytes, as in brown adipocytes, has been reported to occur via the uncoupling protein 1 (UCP1). However, several previous in vitro characterizations of human beige adipocytes have only measured UCP1 mRNA fold increase, and assumed a direct correlation with metabolic activity.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
July 2017
In this study, we present the translational modeling used in the discovery of AZD1979, a melanin-concentrating hormone receptor 1 (MCHr1) antagonist aimed for treatment of obesity. The model quantitatively connects the relevant biomarkers and thereby closes the scaling path from rodent to man, as well as from dose to effect level. The complexity of individual modeling steps depends on the quality and quantity of data as well as the prior information; from semimechanistic body-composition models to standard linear regression.
View Article and Find Full Text PDF