Traumatic brain injury (TBI) is a risk factor for neurodegeneration, however little is known about how different neuron types respond to this kind of injury. In this study, we follow neuronal populations over several months after a single mild TBI (mTBI) to assess long ranging consequences of injury at the level of single, transcriptionally defined neuronal classes. We find that the stress responsive Activating Transcription Factor 3 (ATF3) defines a population of cortical neurons after mTBI.
View Article and Find Full Text PDFDuring development, animals generate distinct cell populations with specific identities, functions, and morphologies. We mapped transcriptionally distinct populations across 489,686 cells from 62 stages during wild-type zebrafish embryogenesis and early larval development (3-120 h post-fertilization). Using these data, we identified the limited catalog of gene expression programs reused across multiple tissues and their cell-type-specific adaptations.
View Article and Find Full Text PDFThe ability to detect several types of cancer using a non-invasive, blood-based test holds the potential to revolutionize oncology screening. We mined tumor methylation array data from the Cancer Genome Atlas (TCGA) covering 14 cancer types and identified two novel, broadly-occurring methylation markers at and . To evaluate their performance as a generalized blood-based screening approach, along with our previously reported methylation biomarker, , we rigorously assessed each marker individually or combined.
View Article and Find Full Text PDFDuring development, animals generate distinct cell populations with specific identities, functions, and morphologies. We mapped transcriptionally distinct populations across 489,686 cells from 62 stages during wild-type zebrafish embryogenesis and early larval development (3-120 hours post-fertilization). Using these data, we identified the limited catalog of gene expression programs reused across multiple tissues and their cell-type-specific adaptations.
View Article and Find Full Text PDFImproving predictions of phenotypic consequences for genomic variants is part of ongoing efforts in the scientific community to gain meaningful insights into genomic function. Within the framework of the critical assessment of genome interpretation experiments, we participated in the Vex-seq challenge, which required predicting the change in the percent spliced in measure (ΔΨ) for 58 exons caused by more than 1,000 genomic variants. Experimentally determined through the Vex-seq assay, the Ψ quantifies the fraction of reads that include an exon of interest.
View Article and Find Full Text PDFRecent evidence shows that mutations in several driver genes can cause aberrant methylation patterns, a hallmark of cancer. In light of these findings, we hypothesized that the landscapes of tumor genomes and epigenomes are tightly interconnected. We measured this relationship using principal component analyses and methylation-mutation associations applied at the nucleotide level and with respect to genome-wide trends.
View Article and Find Full Text PDFSites that display recurrent, aberrant DNA methylation in cancer represent potential biomarkers for screening and diagnostics. Previously, we identified hypermethylation at the ZNF154 CpG island in 15 solid epithelial tumor types from 13 different organs. In this study, we measure the magnitude and pattern of differential methylation of this region across colon, lung, breast, stomach, and endometrial tumor samples using next-generation bisulfite amplicon sequencing.
View Article and Find Full Text PDFBackground: The term CpG island methylator phenotype (CIMP) has been used to describe widespread DNA hypermethylation at CpG-rich genomic regions affecting clinically distinct subsets of cancer patients. Even though there have been numerous studies of CIMP in individual cancer types, a uniform analysis across tissues is still lacking.
Results: We analyze genome-wide patterns of CpG island hypermethylation in 5,253 solid epithelial tumors from 15 cancer types from TCGA and 23 cancer cell lines from ENCODE.
Background: Differentiation of primordial germ cells into mature spermatozoa proceeds through multiple stages, one of the most important of which is meiosis. Meiotic recombination is in turn a key part of meiosis. To achieve the highly specialized and diverse functions necessary for the successful completion of meiosis and the generation of spermatozoa thousands of genes are coordinately regulated through spermatogenesis.
View Article and Find Full Text PDFThe study of aberrant DNA methylation in cancer holds the key to the discovery of novel biological markers for diagnostics and can help to delineate important mechanisms of disease. We have identified 12 loci that are differentially methylated in serous ovarian cancers and endometrioid ovarian and endometrial cancers with respect to normal control samples. The strongest signal showed hypermethylation in tumors at a CpG island within the ZNF154 promoter.
View Article and Find Full Text PDFMicrotubule (MT) dynamic instability is fundamental to many cell functions, but its mechanism remains poorly understood, in part because it is difficult to gain information about the dimer-scale events at the MT tip. To address this issue, we used a dimer-scale computational model of MT assembly that is consistent with tubulin structure and biochemistry, displays dynamic instability, and covers experimentally relevant spans of time. It allows us to correlate macroscopic behaviors (dynamic instability parameters) with microscopic structures (tip conformations) and examine protofilament structure as the tip spontaneously progresses through both catastrophe and rescue.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2011
A link between dimer-scale processes and microtubule (MT) dynamics at macroscale is studied by comparing simulations obtained using computational dimer-scale model with its mean-field approximation. The novelty of the mean-field model (MFM) is in its explicit representation of inter-protofilament cracks, as well as in the direct incorporation of the dimer-level kinetics. Due to inclusion of both longitudinal and lateral dimer interactions, the MFM is two dimensional, in contrast to previous theoretical models of MTs.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2006
A theoretical model of dynamic instability of a system of linear one-dimensional microtubules (MTs) in a bounded domain is introduced for studying the role of a cell edge in vivo and analyzing the effect of competition for a limited amount of tubulin. The model differs from earlier models in that the evolution of MTs is based on the rates of single-mesoscopic-unit (e.g.
View Article and Find Full Text PDFMicrotubule dynamic instability plays a fundamental role in cell biology, enabling microtubules to find and interact with randomly distributed cargo and spatially localized signals. In vitro, microtubules transition between growth and shrinkage symmetrically, consistent with the theoretical understanding of the mechanism of dynamic instability. In vivo, however, microtubules commonly exhibit asymmetric dynamic instability, growing persistently in the cell interior and experiencing catastrophe near the cell edge.
View Article and Find Full Text PDFWe present a general derivation of one-dimensional spatial concentration distributions for anomalous transport regimes. Such transport can be captured in the framework of a continuous time random walk with a broad transition time distribution. This general theory includes a Fokker-Planck equation as a particular limiting case.
View Article and Find Full Text PDF