Despite the identification of several dozen genetic loci associated with ischemic stroke (IS), the genetic bases of this disease remain largely unexplored. In this research we present the results of genome-wide association studies (GWAS) based on classical statistical testing and machine learning algorithms (logistic regression, gradient boosting on decision trees, and tabular deep learning model TabNet). To build a consensus on the results obtained by different techniques, the Pareto-Optimal solution was proposed and applied.
View Article and Find Full Text PDFThe genetic architecture of ischemic stroke (IS), which is one of the leading causes of death worldwide, is complex and underexplored. The traditional approach for associative gene mapping is genome-wide association studies (GWASs), testing individual single-nucleotide polymorphisms (SNPs) across the genomes of case and control groups. The purpose of this research is to develop an alternative approach in which groups of SNPs are examined rather than individual ones.
View Article and Find Full Text PDFTo date, there has been great progress in understanding the genetic basis of ischemic stroke (IS); however, several aspects of the condition remain underexplored, including the influence of genetic factors on post-stroke outcomes and the identification of causative loci. We proposed that an analysis of the results obtained from animal models of brain ischemia could be helpful. To this end, we developed a bioinformatic approach for exploring single-nucleotide polymorphisms (SNPs) in human orthologs of rat genes expressed differentially after induced brain ischemia.
View Article and Find Full Text PDFCommon alleles tend to be more ancient than rare alleles. These common SNPs appeared thousands of years ago and reflect intricate human evolution including various adaptations, admixtures, and migration events. Eighty-four thousand abundant region-specific alleles (ARSAs) that are common in one continent but absent in the rest of the world have been characterized by processing 3100 genomes from 230 populations.
View Article and Find Full Text PDFAlthough there has been great progress in understanding the genetic bases of ischemic stroke (IS), many of its aspects remain underexplored. These include the genetics of outcomes, as well as problems with the identification of real causative loci and their functional annotations. Therefore, analysis of the results obtained from animal models of brain ischemia could be helpful.
View Article and Find Full Text PDFIn this paper we propose a workflow for studying the genetic architecture of ischemic stroke outcomes. It develops further the candidate gene approach. The workflow is based on the animal model of brain ischemia, comparative genomics, human genomic variations, and algorithms of selection of tagging single nucleotide polymorphisms (tagSNPs) in genes which expression was changed after ischemic stroke.
View Article and Find Full Text PDFWe performed an exhaustive pairwise comparison of whole-genome sequences of 3120 individuals, representing 232 populations from all continents and seven prehistoric people including archaic and modern humans. In order to reveal an intricate picture of worldwide human genetic relatedness, 65 million very rare single nucleotide polymorphic (SNP) alleles have been bioinformatically processed. The number and size of shared identical-by-descent (IBD) genomic fragments for every pair of 3127 individuals have been revealed.
View Article and Find Full Text PDFBackground: The imputation of genotypes increases the power of genome-wide association studies. However, the imputation quality should be assessed in each particular case. Nevertheless, not all imputation softwares control the error of output, e.
View Article and Find Full Text PDFNon-invasive prenatal testing (NIPT) for aneuploidy on Chromosomes 21 (T21), 18 (T18) and 13 (T13) is actively used in clinical practice around the world. One of the limitations of the wider implementation of this test is the high cost of the analysis itself, as high-throughput sequencing is still relatively expensive. At the same time, there is an increasing trend in the length of reads yielded by sequencers.
View Article and Find Full Text PDFNatural selection of beneficial genetic variants played a critical role in human adaptation to a wide range of environmental conditions. Northern Eurasia, despite its severe climate, is home to lots of ethnically diverse populations. The genetic variants associated with the survival of these populations have hardly been analyzed.
View Article and Find Full Text PDF