Publications by authors named "Gennadi Bersuker"

The ability to scale two-dimensional (2D) material thickness down to a single monolayer presents a promising opportunity to realize high-speed energy-efficient memristors. Here, we report an ultra-fast memristor fabricated using atomically thin sheets of 2D hexagonal Boron Nitride, exhibiting the shortest observed switching speed (120 ps) among 2D memristors and low switching energy (2pJ). Furthermore, we study the switching dynamics of these memristors using ultra-short (120ps-3ns) voltage pulses, a frequency range that is highly relevant in the context of modern complementary metal oxide semiconductor (CMOS) circuits.

View Article and Find Full Text PDF

The interface between III-V and metal-oxide-semiconductor materials plays a central role in the operation of high-speed electronic devices, such as transistors and light-emitting diodes. The high-speed property gives the light-emitting diodes a high response speed and low dark current, and they are widely used in communications, infrared remote sensing, optical detection, and other fields. The rational design of high-performance devices requires a detailed understanding of the electronic structure at this interface; however, this understanding remains a challenge, given the complex nature of surface interactions and the dynamic relationship between the morphology evolution and electronic structures.

View Article and Find Full Text PDF

Formation of metal rich conductive filaments and their rearrangements determine the switching characteristics in HfO2 based resistive random access memory (RRAM) devices. The initiation of a filament formation process may occur either via aggregation of pre-existing vacancies randomly distributed in the oxide or via generation of new oxygen vacancies close to the pre-existing ones. We evaluate the feasibility of vacancy aggregation processes by calculating the structures and binding energies of oxygen vacancy aggregates consisting of 2, 3 and 4 vacancies in bulk monoclinic (m)-HfO2 using density functional theory (DFT).

View Article and Find Full Text PDF

The advent and exponential growth of mobile computing has spurred greater emphasis on the adoption of III-V compound semiconductors in device architectures. The introduction of high charge carrier densities within InxGa1-xAs and the development of metrologies to quantitate the extent of doping have thus emerged as an urgent imperative. As an amphoteric dopant, Si begins to occupy anionic sites at high concentrations, thereby limiting the maximum carrier density that can be obtained upon Si doping of III-V semiconductors.

View Article and Find Full Text PDF

We present a Raman spectroscopy study of electron-phonon coupling in In0.53Ga0.47As epilayers doped via the sulfur-monolayer doping method.

View Article and Find Full Text PDF