Publications by authors named "Genliang Chen"

Pneumatic oscillators, incorporating soft non-electrical logic gates, offer an efficient means of actuating robots to perform tasks in extreme environments. However, the current design paradigms for these devices typically feature uniform structures with low rigidity, which restricts their oscillation frequency and limits their functions. Here, we present a pneumatic hybrid oscillator that integrates a snap-through buckling beam, fabric chambers, and a switch valve into its hybrid architecture.

View Article and Find Full Text PDF

Soft grippers due to their highly compliant material and self-adaptive structures attract more attention to safe and versatile grasping tasks compared to traditional rigid grippers. However, those flexible characteristics limit the strength and the manipulation capacity of soft grippers. In this paper, we introduce a hybrid-driven gripper design utilizing origami finger structures, to offer adjustable finger stiffness and variable grasping range.

View Article and Find Full Text PDF

Soft structures and actuation allow robots, conventionally consisting of rigid components, to perform more compliant, adaptive interactions similar to living creatures. Although numerous functions of these types of actuators have been demonstrated in the literature, their hyperelastic designs generally suffer from limited workspaces and load-carrying capabilities primarily due to their structural stretchability factor. Here, we describe a series of pneumatic actuators based on soft but less stretchable fabric that can simultaneously perform tunable workspace and bear a high payload.

View Article and Find Full Text PDF