IEEE/ACM Trans Comput Biol Bioinform
August 2024
Due to the broad-spectrum and high-efficiency antibacterial activity, antimicrobial peptides (AMPs) and their functions have been studied in the field of drug discovery. Using biological experiments to detect the AMPs and corresponding activities require a high cost, whereas computational technologies do so for much less. Currently, most computational methods solve the identification of AMPs and their activities as two independent tasks, which ignore the relationship between them.
View Article and Find Full Text PDFModern embedded systems have achieved relatively high processing power. They can be used for edge computing and computer vision, where data are collected and processed locally, without the need for network communication for decision-making and data analysis purposes. Face detection, face recognition, and pose detection algorithms can be executed with acceptable performance on embedded systems and are used for home security and monitoring.
View Article and Find Full Text PDFBackground: Artificial intelligence-based aided diagnostic systems for pulmonary nodules can be divided into subtasks such as nodule detection, segmentation, and benign and malignant differentiation. Most current studies are limited to single-target tasks. However, aided diagnosis aims to distinguish benign from malignant pulmonary nodules, which requires the fusion of multiple-scale features and comprehensive discrimination based on the results of multiple learning tasks.
View Article and Find Full Text PDFDetermining drug-drug interactions (DDIs) is an important part of pharmacovigilance and has a vital impact on public health. Compared with drug trials, obtaining DDI information from scientific articles is a faster and lower cost but still a highly credible approach. However, current DDI text extraction methods consider the instances generated from articles to be independent and ignore the potential connections between different instances in the same article or sentence.
View Article and Find Full Text PDF. Electrocardiogram (ECG) is an important diagnostic tool that has been the subject of much research in recent years. Owing to a lack of well-labeled ECG record databases, most of this work has focused on heartbeat arrhythmia detection based on ECG signal quality.
View Article and Find Full Text PDFComput Methods Programs Biomed
September 2019
Background And Objective: Electrocardiogram (ECG) is an important diagnostic tool for the diagnosis of heart disorders. Useful features and well-designed classification method are crucial for automatic diagnosis. However, most of the contributions were in single lead or two-lead ECG signal and only features from single lead were used to classify the ECG beats.
View Article and Find Full Text PDFLung cancer is one of the most diagnosable forms of cancer worldwide. The early diagnoses of pulmonary nodules in computed tomography (CT) chest scans are crucial for potential patients. Recent researches have showed that the methods based on deep learning have made a significant progress for the medical diagnoses.
View Article and Find Full Text PDF