Publications by authors named "Genki Kudo"

DNA methylation is an epigenetic mechanism that introduces a methyl group at the C5 position of cytosine. This reaction is catalyzed by DNA methyltransferases (DNMTs) and is essential for the regulation of gene transcription. The DNMT1 and DNMT3A or -3B family proteins are known targets for the inhibition of DNA hypermethylation in cancer cells.

View Article and Find Full Text PDF

Time efficiency and cost savings are major challenges in drug discovery and development. In this process, the hit-to-lead stage is expected to improve efficiency because it primarily exploits the trial-and-error approach of medicinal chemists. This study proposes a site identification and next choice (SINCHO) protocol to improve the hit-to-lead efficiency.

View Article and Find Full Text PDF

Peptides have attracted much attention recently owing to their well-balanced properties as drugs against protein-protein interaction (PPI) surfaces. Molecular simulation-based predictions of binding sites and amino acid residues with high affinity to PPI surfaces are expected to accelerate the design of peptide drugs. Mixed-solvent molecular dynamics (MSMD), which adds probe molecules or fragments of functional groups as solutes to the hydration model, detects the binding hotspots and cryptic sites induced by small molecules.

View Article and Find Full Text PDF

To achieve good treatment outcomes in coil embolization for cerebral aneurysms, it is important to select an appropriate 1st coil for each aneurysm since it serves as a frame to support the subsequent coils to be deployed. However, its selection as appropriate size and length from a wide variety of lineups is not easy, especially for inexperienced neurosurgeons. We developed a machine learning model (MLM) to predict the optimal size and length of the 1st coil by learning information on patients and aneurysms that were previously treated with coil embolization successfully.

View Article and Find Full Text PDF

Summary: Understanding the binding site of the target protein is essential for rational drug design. Pocket detection software predicts the ligand binding site of the target protein; however, the predicted protein pockets are often excessively estimated in comparison with the actual volume of the bound ligands. This study proposes a refinement tool for the pockets predicted by an alpha sphere-based approach, Pocket to Concavity (P2C).

View Article and Find Full Text PDF

To ensure efficiency in discovery and development, the application of computational technology is essential. Although virtual screening techniques are widely applied in the early stages of drug discovery research, the computational methods used in lead optimization to improve activity and reduce the toxicity of compounds are still evolving. In this study, we propose a method to construct the residue interaction profile of the chemical structure used in the lead optimization by performing "inverse" mixed-solvent molecular dynamics (MSMD) simulation.

View Article and Find Full Text PDF