Catalytic diesel soot combustion was examined using a series of Mn O catalysts with different morphologies, including plate, prism, hollow spheres and powders. The plate-shaped Mn O (Mn O -plate) exhibited superior carbon soot combustion activity compared to the prism-shaped, hollow-structured and powdery Mn O under both tight and loose contact modes at soot combustion temperatures (T ) of 327 °C and 457 °C, respectively. Comprehensive characterization studies using scanning electron microscopy, scanning transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction and oxygen release measurements, revealed that the improved activity of Mn O -plate was mainly attributed to the high oxygen release rate of surface-adsorbed active oxygen species, which originated from oxygen vacancy sites introduced during the catalyst preparation, rather than specific surface-exposed planes.
View Article and Find Full Text PDFReceptor activator of nuclear factor-kappa B (RANK) ligand (RANKL) binds RANK on the surface of osteoclast precursors to trigger osteoclastogenesis. Recent studies have indicated that osteocytic RANKL has an important role in osteoclastogenesis during bone remodelling; however, the role of osteoblastic RANKL remains unclear. Here we show that vesicular RANK, which is secreted from the maturing osteoclasts, binds osteoblastic RANKL and promotes bone formation by triggering RANKL reverse signalling, which activates Runt-related transcription factor 2 (Runx2).
View Article and Find Full Text PDFExcessive exposure to glucocorticoids causes osteoporosis in children and adults. Occlusal disharmony is known to induce an increase in serum corticosteroid levels in murine models, but the influence of occlusal disharmony-induced stress on the bone mass during the growth period has not yet been clarified. The purpose of this study was to investigate whether occlusal disharmony-induced stress decreases bone mass.
View Article and Find Full Text PDFIntroduction: We designed OP3-4 (YCEIEFCYLIR), a cyclic peptide, to mimic the soluble osteoprotegerin (OPG), and was proven to bind to RANKL (receptor activator of NF-κB ligand), thereby inhibiting osteoclastogenesis. We recently found that another RANKL binding peptide, W9, could accelerate bone formation by affecting RANKL signaling in osteoblasts. We herein demonstrate the effects of OP3-4 on bone formation and bone loss in a murine model of rheumatoid arthritis.
View Article and Find Full Text PDF