Acidobacteria is a predominant bacterial phylum in tropical agricultural soils, including sugarcane cultivated soils. The increased need for fertilizers due to the expansion of sugarcane production is a threat to the ability of the soil to maintain its potential for self-regulation in the long term, in witch carbon degradation has essential role. In this study, a culture-independent approach based on high-throughput DNA sequencing and microarray technology was used to perform taxonomic and functional profiling of the Acidobacteria community in a tropical soil under sugarcane ( spp.
View Article and Find Full Text PDFNext-generation DNA sequencing technology was applied to generate molecular data from semiarid reservoirs during well-defined seasons. Target sequences of 16S-23S rRNA ITS and cpcBA-IGS were used to reveal the taxonomic groups of cyanobacteria present in the samples, and genes coding for cyanotoxins such as microcystins (mcyE), saxitoxins (sxtA), and cylindrospermopsins (cyrJ) were investigated. The presence of saxitoxins in the environmental samples was evaluated using ELISA kit.
View Article and Find Full Text PDFOn coral reefs, microorganisms are essential for recycling nutrients to primary producers through the remineralization of benthic-derived organic matter. Diel investigations of reef processes are required to holistically understand the functional roles of microbial players in these ecosystems. Here we report a metagenomic analysis characterizing microbial communities in the water column overlying 16 remote forereef sites over a diel cycle.
View Article and Find Full Text PDFOne of the main goals in metagenomics is to identify the functional profile of a microbial community from unannotated shotgun sequencing reads. Functional annotation is important in biological research because it enables researchers to identify the abundance of functional genes of the organisms present in the sample, answering the question, "What can the organisms in the sample do?" Most currently available approaches do not scale with increasing data volumes, which is important because both the number and lengths of the reads provided by sequencing platforms keep increasing. Here, we present SUPER-FOCUS, SUbsystems Profile by databasE Reduction using FOCUS, an agile homology-based approach using a reduced reference database to report the subsystems present in metagenomic datasets and profile their abundances.
View Article and Find Full Text PDFImmunity is mostly studied in a few model organisms, leaving the majority of immune systems on the planet unexplored. To characterize the immune systems of non-model organisms alternative approaches are required. Viruses manipulate host cell biology through the expression of proteins that modulate the immune response.
View Article and Find Full Text PDFGenome Announc
May 2016
Cylindrospermopsis raciborskii ITEP-A1 is a saxitoxin-producing cyanobacterium. We report the draft genome sequence of ITEP-A1, which comprised 195 contigs that were assembled with SPAdes and annotated with Rapid Annotation using Subsystem Technology. The identified genome sequence had 3,605,836 bp, 40.
View Article and Find Full Text PDFSummary: Analyzing the functional profile of a microbial community from unannotated shotgun sequencing reads is one of the important goals in metagenomics. Functional profiling has valuable applications in biological research because it identifies the abundances of the functional genes of the organisms present in the original sample, answering the question what they can do. Currently, available tools do not scale well with increasing data volumes, which is important because both the number and lengths of the reads produced by sequencing platforms keep increasing.
View Article and Find Full Text PDFGenomics and metagenomics have revolutionized our understanding of marine microbial ecology and the importance of microbes in global geochemical cycles. However, the process of DNA sequencing has always been an abstract extension of the research expedition, completed once the samples were returned to the laboratory. During the 2013 Southern Line Islands Research Expedition, we started the first effort to bring next generation sequencing to some of the most remote locations on our planet.
View Article and Find Full Text PDFOne of the major goals in metagenomics is to identify the organisms present in a microbial community from unannotated shotgun sequencing reads. Taxonomic profiling has valuable applications in biological and medical research, including disease diagnostics. Most currently available approaches do not scale well with increasing data volumes, which is important because both the number and lengths of the reads provided by sequencing platforms keep increasing.
View Article and Find Full Text PDF