Publications by authors named "Genhui Zheng"

Metabolite-associated cell communications play critical roles in maintaining the normal biological function of human through coordinating cells, organs and physiological systems. Though substantial information of MACCs has been continuously reported, no relevant database has become available so far. To address this gap, we here developed the first knowledgebase (MACC), to comprehensively describe human metabolite-associated cell communications through curation of experimental literatures.

View Article and Find Full Text PDF

Neoantigen vaccines are one of the most effective immunotherapies for personalized tumour treatment. The current immunogen design of neoantigen vaccines is usually based on whole-genome sequencing (WGS) and bioinformatics prediction that focuses on the prediction of binding affinity between peptide and MHC molecules, ignoring other peptide-presenting related steps. This may result in a gap between high prediction accuracy and relatively low clinical effectiveness.

View Article and Find Full Text PDF

Identifying the exact epitope positions for a monoclonal antibody (mAb) is of critical importance yet highly challenging to the Ab design of biomedical research. Based on previous versions of SEPPA 3.0, we present SEPPA-mAb for the above purpose with high accuracy and low false positive rate (FPR), suitable for both experimental and modelled structures.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cells targeting CD19 antigen have produced remarkable clinical outcomes for cancer patients. However, identifying measures to enhance effector function remains one of the most challenging issues in CD19-targeted immunotherapy. Here, we report a novel approach in which a microRNA (miRNA) or short-hairpin RNA (shRNA) cassette was integrated into CAR-expressing retroviral vectors.

View Article and Find Full Text PDF

Literature-described targets of herbal ingredients have been explored to facilitate the mechanistic study of herbs, as well as the new drug discovery. Though several databases provided similar information, the majority of them are limited to literatures before 2010 and need to be updated urgently. HIT 2.

View Article and Find Full Text PDF

Though transcriptomics technologies evolve rapidly in the past decades, integrative analysis of mixed data between microarray and RNA-seq remains challenging due to the inherent variability difference between them. Here, Rank-In was proposed to correct the nonbiological effects across the two technologies, enabling freely blended data for consolidated analysis. Rank-In was rigorously validated via the public cell and tissue samples tested by both technologies.

View Article and Find Full Text PDF