Floating gate transistor photomemory (FGTPM) has been regarded as one of the most prospective nonvolatile photomemory devices because of its compatibility with transistor-based circuits, nondestructive reading, and multilevel storage. Until now, owing to the excellent photoelectric properties, lead-based perovskite nanocrystals (PNCs) have been applied in most of the perovskite-based FGTPM devices and embedded in the polymer matrix as the charge trapping layer. However, the polymer matrix and its solvent would degrade the structure of the PNCs, resulting in the loss of their unique photoresponse ability.
View Article and Find Full Text PDFNeuromorphic computation, which emulates the signal process of the human brain, is considered to be a feasible way for future computation. Realization of dynamic modulation of synaptic plasticity and accelerated learning, which could improve the processing capacity and learning ability of artificial synaptic devices, is considered to further improve energy efficiency of neuromorphic computation. Nevertheless, realization of dynamic regulation of synaptic weight without an external regular terminal and the method that could endow artificial synaptic devices with the ability to modulate learning speed have rarely been reported.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2018
Semiconductor quantum dots (QDs) have attracted extensive attention because of their remarkable optical and electrical characteristics. However, the practical application of QDs and further the QD composite films have greatly been hindered mainly owing to their essential drawbacks of extreme unstability under oxygen and water environments. Herein, one simple method has been employed to enhance enormously the stability of Cd ZnSe S QD composite films by a combination of Cd ZnSe S QDs and poly(vinylidene) fluoride (PVDF), which is characteristic of closely arranged molecular chains and strong hydrogen bonds.
View Article and Find Full Text PDFSingle-photon emitters with stable and uniform photoluminescence properties are important for quantum technology. However, in many cases, colour centres in diamond exhibit spectral diffusion and photoluminescence intensity fluctuation. It is therefore essential to investigate the dynamics of colour centres at the single defect level in order to enable the on-demand manipulation and improved applications in quantum technology.
View Article and Find Full Text PDFDirect interference between the orthogonal electric and magnetic modes in a hybrid silicon-gold nanocavity is demonstrated to induce a pronounced asymmetric magnetic-based Fano resonance in the total scattering spectrum at near-infrared frequencies. Differing from the previously reported magnetic-based Fano resonances in metal nanoparticle clusters, the narrow discrete mode provided by the silicon magnetic dipole resonance can be directly excited by external illumination, and greatly enhanced electric and magnetic fields are simultaneously obtained at the Fano dip.
View Article and Find Full Text PDFYb /Tm -codoped NaYF nanocrystals with different phases (cubic α and hexagonal β) and morphologies (nanoparticles, nanorods, nanoplates) have been controllably fabricated by a convenient hydrothermal synthesis technique. Up-conversion emission peaks were observed at λ=450, 475, 645, and 700 nm, which were assigned to the D - F , G - H , G - F , and F - H transitions of Tm ions, respectively. By using a homemade detection system, the anisotropic polarized emission properties of individual NaYF :Yb, Tm nanorods and nanoplates were investigated.
View Article and Find Full Text PDFWe report on a novel method to fabricate single, multiple and large-area high-density ensembles of nitrogen vacancy (NV) color centers in synthetic type Ib bulk diamond by femtosecond laser illumination. Electron beams generated in propagation of intense infrared laser pulses in air sputtered on a diamond sample under high temperature aroused by the laser illumination, creating NV color centers. Typical photoluminescence (PL) spectra of NV centers could be observed on the illuminated spots.
View Article and Find Full Text PDFUp-conversion luminescence in rare earth ions (REs) doped nanoparticles has attracted considerable research attention for the promising applications in solid-state lasers, three-dimensional displays, solar cells, biological imaging, and so forth. However, there have been no reports on REs doped nanoparticles to investigate their polarized energy transfer up-conversion, especially for single particle. Herein, the polarized energy transfer up-conversion from REs doped fluoride nanorods is demonstrated in a single particle spectroscopy mode for the first time.
View Article and Find Full Text PDFMetallic nanowires are of great research interest due to their applications in surface plasmon polariton coupling of light. The efficiency is much dependent on the polarization of the light due to the phase matching requirement in the light-surface plasmon polariton coupling. By scanning confocal microscope, the photoluminescence from a single Ag nanowire was demonstrated strongly dependent on the excitation laser polarization, showing good consistency with the theoretical simulation.
View Article and Find Full Text PDF