Publications by authors named "Gengsheng Weng"

Smart chromic elastomers exhibiting multistimuli responsiveness are of interest with regard to the development of sensors, optical data storage, and smart wearable devices. We report a new design of Cu nanoclusters (Cu NCs) containing polymeric elastomer film, showing reversible fluorescence ON/OFF when subjected to organic solvents (e.g.

View Article and Find Full Text PDF

Fluorochromic materials that change their emission properties in response to their environment are of interest for the development of sensors, optical data storage and light-emitting materials. A thermally fluorochromic elastic polymer film that exhibits remarkable fluorochromism (from red to yellow) and enhancement of fluorescence intensity after thermal treatment (>120 °C) is designed by the incorporation of silver nanoclusters. The thermal treatment also leads to a significant increase of quantum yield and fluorescence lifetime.

View Article and Find Full Text PDF

Self-healing polymers often have a trade-off between healing efficiency and mechanical stiffness. Stiff polymers that sacrifice their chain mobility are slow to repair upon mechanical failure. We herein report adaptable polymer films with dynamically moisture-controlled mechanical and optical properties, therefore having tunable self-healing efficiency.

View Article and Find Full Text PDF

New fluorochromic materials that reversibly change their emission properties in response to their environment are of interest for the development of sensors and light-emitting materials. A new design of Eu-containing polymer hydrogels showing fast self-healing and tunable fluorochromic properties in response to five different stimuli, including pH, temperature, metal ions, sonication, and force, is reported. The polymer hydrogels are fabricated using Eu-iminodiacetate (IDA) coordination in a hydrophilic poly(N,N-dimethylacrylamide) matrix.

View Article and Find Full Text PDF

Cross-linking that defines the three-dimensional networks in hydrogels has a significant impact on their physiochemical properties. The cross-linking of hydrophilic polymers via post-polymerization reactions is an ideal way to manufacture hydrogels with high reproducibility and without monomer residuals. We herein report the use of Ag(i)-catalyzed oxidative decarboxylation to cross-link poly(acrylic acid) (PAA) and a family of COOH-containing hydrophilic polymers.

View Article and Find Full Text PDF

In situ studies of strain-induced crystallization in unfilled and multiwalled carbon nanotube (MWCNT)-filled natural rubber (NR) were carried out by using synchrotron wide-angle X-ray diffraction (WAXD). Synchrotron WAXD results indicate that more nuclei appear in the MWCNT-filled NR sample, leading to higher crystallinity, lower onset strain of crystallization, and remarkable enhancement in tensile strength. During deformation, despite the amorphous chains remaining in isotropic orientation, the domains of larger scale (10-100 nm) with high network chain density in the NR matrix are oriented.

View Article and Find Full Text PDF