Hepatobiliary-specific magnetic resonance imaging contrast agents (MRI CAs) play a crucial role in the early diagnosis of hepatocellular carcinoma (HCC). However, only two acyclic CAs, Gd-BOPTA and Gd-EOB-DTPA, exhibit unfavorable kinetic inertness. Our study focused on the development of superior stable innovative macrocyclic CAs.
View Article and Find Full Text PDFIn recent years, pyclen-based complexes have attracted a great deal of interest as magnetic resonance imaging (MRI) contrast agents (CAs) and luminescent materials, as well as radiopharmaceuticals. Remarkably, gadopiclenol, a Gd(III) bishydrated complex featuring a pyclen-based heptadentate ligand, received approval as a novel contrast agent for clinical MRI application in 2022. To maximize stability and efficiency, two novel chiral pyclen-based chelators and their complexes were developed in this study.
View Article and Find Full Text PDFThe leakage of gadolinium ions (Gd) from commercial Gd-based contrast agents (GBCAs) in patients is currently the major safety concern in clinical magnetic resonance imaging (MRI) scans, and the lack of task-specific GBCAs limits its usage in the early detection of disease and imaging of specific biological regions. Herein, ultrastable GBCAs were constructed via decorating chiral Gd-DOTA with a phenylic analogue to one of the pendent arms, and the stability constant was determined as high as 27.08, accompanied by negligible decomplexation in 1 M of HCl over 2 years.
View Article and Find Full Text PDF