BPA, a common environmental endocrine disruptor, has been reported to induce epigenetic changes and disrupt glucose homeostasis in F1 offspring through maternal exposure. However, no studies have examined whether maternal BPA exposure can exert multigenerational effects of glucose metabolic disorder on F2 generation through the altered epigenetic information. The aim of the current study was to investigate whether BPA exposure can disrupt glucose homeostasis in F2 offspring and the underlying epigenetic mechanism.
View Article and Find Full Text PDFAn emerging literature suggests that bisphenol A (BPA), a widespread endocrine disrupting chemical, when exposure occurs in early life, may increase the risk of metabolic syndrome. In this study, we investigated the hypothesis that perinatal exposure to BPA predisposed offspring to fatty liver disease: the hepatic manifestation of metabolic syndrome, and its possible mechanism. Pregnant Wistar rats were administered with BPA (40μg/kg/day) or vehicle during gestation and lactation.
View Article and Find Full Text PDFExposure to bisphenol A (BPA), a monomer widely used to manufacture polycarbonate plastics, has been reported to be associated with abnormalities of liver function and hepatic damage. However, the molecular mechanism under the pathogenesis of hepatic injury is unclear. In this study, the effect of perinatal exposure to BPA at the reference dose of 50 µg/kg/day on the apoptotic index in the liver of rat offspring was investigated.
View Article and Find Full Text PDFBisphenol A (BPA) exposure has been reported to be epidemiologically associated with heart disease. As mitochondria play an important role in the early development of the heart and in the pathogenesis of heart disease, the current study investigated the possibility of cardiac mitochondrial injury in neonatal rat heart prenatally exposed to BPA. Pregnant Wistar rats were exposed to BPA 50 µg kg(-1) day(-1) or corn oil 1 ml kg(-1) by oral gavage throughout gestation.
View Article and Find Full Text PDFPerfluorooctane sulfonate (PFOS), which belongs to the degradation product of many perfluorinated compounds, is on the list of persistent organic pollutants (POPs) and is currently detected in both wildlife and humans. The consequence of gestational and lactational exposure to PFOS on prediabetes effect in offspring was investigated in rats in the present study. Maternal rats were treated with vehicle, 0.
View Article and Find Full Text PDFPerfluorooctane sulfonate (PFOS) is an environmental organic pollutant, the potential neurotoxicity of which is causing great concern in fish. In the present study, we examined the effects of PFOS on motor neurons, and investigated the potential toxicological mechanisms oxidative stress in zebrafish embryos. Six-hour post-fertilization (hpf) zebrafish embryos were exposed to 1.
View Article and Find Full Text PDFXenobiotics exposure in early life may have adverse effects on animals' development through mitochondrial injury or dysfunction. The current study demonstrated the possibility of cardiac mitochondrial injury in prenatal PFOS-exposed weaned rat heart. Pregnant Sprague-Dawley (SD) rats were exposed to perfluorooctane sulfonate (PFOS) at doses of 0.
View Article and Find Full Text PDF