The boroProline-based dipeptidyl boronic acids were among the first DPP-IV inhibitors identified, and remain the most potent known. We introduced various substitutions at the 4-position of the boroProline ring regioselectively and stereoselectively, and incorporated these aminoboronic acids into a series of 4-substituted boroPro-based dipeptides. Among these dipeptidyl boronic acids, Arg-(4S)-boroHyp (4q) was the most potent inhibitor of DPP-IV, DPP8 and DPP9, while (4S)-Hyp-(4R)-boroHyp (4o) exhibited the most selectivity for DPP-IV over DPP8 and DPP9.
View Article and Find Full Text PDFExisting 14, 15 and 16-membered macrolide antibiotics, while effective for other bacterial infections, including some mycobacteria, have not demonstrated significant efficacy in tuberculosis. Therefore an attempt was made to optimize this class for activity against Mycobacterium tuberculosis through semisyntheses and bioassay. Approximately 300 macrolides were synthesized and screened for anti-TB activity.
View Article and Find Full Text PDFAim: To study asymmetric total synthesis of 14-nor-huperzine A 2 and its inhibitory activity on acetylcholinesterase.
Methods: Highly enantioselective synthesis of compound 5 from beta-keto-ester 3 and 2-methylene-1,3-propanediol diacetate 4 by palladium-catalyzed bicycloannulation was carried out using new chiral ferrocenylphosphine ligands, such as 10, 11, followed by regioselective double-bond migration to produce compound 6. Optically pure 6 was obtained after enantio-enrichment recrystallization.
We examined the pharmacokinetics and metabolism of the experimental nucleoside reverse transcriptase inhibitor compound stampidine in mice, dogs, and cats. Also reported is the identification of p-bromophenyl sulfate (p-Br-Ph-S) as a major in vivo phase II metabolite of stampidine. Liver cytosol was shown to take part in the hydrolysis of stampidine to form alaninyl-STV-monophosphate (Ala-STV-MP), 2',3'-didehydro-3'-deoxythymidine (STV), and p-bromophenol; p-bromophenol was further sulfonated by sulfotransferase to form p-Br-Ph-S.
View Article and Find Full Text PDF