Medical antibacterial textiles play a vital role in tackling the issue of bacterial infection. Traditional surgical sutures face significant challenges due to wound infection caused by bacteria and breakage and scars caused by poor suture strength. Therefore, a new antibacterial and high-strength suture preparation strategy with wide clinical applicability was highly desired.
View Article and Find Full Text PDFOrganic-inorganic hybrid silica materials, incorporating an organic group bridging two silicon atoms, have demonstrated great potential in creating membranes with excellent permselectivity. Yet, the large-scale production of polymer-supported flexible hybrid silica membranes has remained a significant challenge. In this study, we present an easy and scalable approach for fabricating these membranes.
View Article and Find Full Text PDFOrganic solvent nanofiltration (OSN) is an emerging membrane separation technology, which urgently requires robust, easily processed, OSN membranes possessing high permeance and small solutes-selectivity to facilitate enhanced industrial uptake. Herein, we describe the use of two 2,2'-biphenol (BIPOL) derivatives to fabricate hyper-crosslinked, microporous polymer nanofilms through IP. Ultra-thin, defect-free polyesteramide/polyester nanofilms (≈5 nm) could be obtained readily due to the relatively large molecular size and ionized nature of the BIPOL monomers retarding the rate of the IP.
View Article and Find Full Text PDFCompared to the traditional chemical-crosslinking-based polymer, the porous polytetrafluoroethylene (PTFE) substrate is considered to be an excellent support for the fabrication of thin-film composite (TFC) organic solvent nanofiltration (OSN) membranes. However, the low surface energy and chemical inertness of PTFE membranes presented major challenges for fabricating a polyamide active layer on its surface via interfacial polymerization (IP). In this study, a triple-layered TFC OSN membrane was fabricated via IP, which consisted of a PA top layer on a carbon nanotube (CNT) interlayer covering the macroporous PTFE substrate.
View Article and Find Full Text PDFA triple-layered TFC nanofiltration (NF) membrane consisting of a polyamide (PA) top layer covered on a poly(ether sulfone) microfiltration membrane with a carbon nanotube (CNT) interlayer was fabricated via interfacial polymerization. The structure and properties of the PA active layer could be finely tailored by tuning the interfacial properties and pore structure of the CNT interlayer, including its surface pore size and thickness, thus improving its NF performance. This TFC NF membrane exhibited a high divalent salt rejection (the rejection of NaSO and MgSO solution >98.
View Article and Find Full Text PDFThe fabrication of a continuous and uniform organosilica membrane on a porous polymer substrate was achieved via a facile and technologically scalable flow-induced deposition (FD) approach. The uniformity of the thickness of an organosilica separation layer on a polymer surface with a large area was improved significantly via this two-step FD approach. Meanwhile, the optimal concentration of the organosilica used in membrane preparation was also investigated.
View Article and Find Full Text PDFTargeting of nanoparticles to distant diseased sites after oral delivery remains highly challenging due to the existence of many biological barriers in the gastrointestinal tract. Here we report targeted oral delivery of diverse nanoparticles in multiple disease models, via a "Trojan horse" strategy based on a bioinspired yeast capsule (YC). Diverse charged nanoprobes including quantum dots (QDs), iron oxide nanoparticles (IONPs), and assembled organic fluorescent nanoparticles can be effectively loaded into YC through electrostatic force-driven spontaneous deposition, resulting in different diagnostic YC assemblies.
View Article and Find Full Text PDFA promising layered-hybrid membrane consisting of a microporous organosilica active layer deposited onto a porous polymer support was prepared via a facile sol-gel spin-coating process. Subsequently, the pore sizes and structures of the organosilica top layers on the membrane surface were tuned at mild temperature combined with vapor treatment from either hydrochloric acid (HVT) or ammonia (AVT), thereby tailoring the desalination performance of the membranes during reverse osmosis (RO) processing. The effects of HVT and AVT on the pore size, structure, and morphology of organosilica layers and on the separation performances of membranes were investigated in detail.
View Article and Find Full Text PDFAlcohol dehydrogenase (ADH) from permeabilized brewer's yeast was immobilized on derived attapulgite nanofibers via glutaraldehyde covalent binding. The effect of immobilization on ADH activity, optimum temperature and pH, thermal, pH and operational stability, reusability of immobilized ADH, and bioreduction of ethyl 3-oxobutyrate (EOB) to ethyl(S)-3-hydroxybutyrate ((S)-EHB) by the immobilized ADH were investigated. The results show the immobilized ADH retained higher activity over wider ranges of pH and temperature than those of the free.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
January 2009
The effects of industrial storage on the changes of the cell viability and the activities of intracellular alcohol dehydrogenase (ADH) and glucose-6-phosphate dehydrogenase (G6PDH) in brewer's yeast, and the corresponding capacity for the bioconversion of ethyl-3-oxobutanoate (EOB) to ethyl (S)-3-hydroxybutanoate ((S)-EHB), were investigated. The viability of fresh brewer's yeast cells stored in industrial circulating cooling water at 1-2 degrees C showed 4 and 15% drop after the storage of 7 and 15 days, respectively, after which cells died rapidly. The pretreatment of the stored brewer's yeast cells by washing and screening significantly enhanced cell viability during industrial storage.
View Article and Find Full Text PDF