Publications by authors named "Gengfa Fang"

In this work, we propose a new Dual Min-Max Games (DMMG) based self-supervised skeleton action recognition method by augmenting unlabeled data in a contrastive learning framework. Our DMMG consists of a viewpoint variation min-max game and an edge perturbation min-max game. These two min-max games adopt an adversarial paradigm to perform data augmentation on the skeleton sequences and graph-structured body joints, respectively.

View Article and Find Full Text PDF

Microseismic monitoring is one of the most critical technologies for hydraulic fracturing in oil and gas production. To detect events in an accurate and efficient way, there are two major challenges. One challenge is how to achieve high accuracy due to a poor signal-to-noise ratio (SNR).

View Article and Find Full Text PDF

Super dense wireless sensor networks (WSNs) have become popular with the development of Internet of Things (IoT), Machine-to-Machine (M2M) communications and Vehicular-to-Vehicular (V2V) networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced.

View Article and Find Full Text PDF

Generating random binary sequences (BSes) is a fundamental requirement in cryptography. A BS is a sequence of N bits, and each bit has a value of 0 or 1. For securing sensors within wireless body area networks (WBANs), electrocardiogram (ECG)-based BS generation methods have been widely investigated in which interpulse intervals (IPIs) from each heartbeat cycle are processed to produce BSes.

View Article and Find Full Text PDF

As defined by IEEE 802.15.6 standard, channel sharing is a potential method to coordinate inter-network interference among Medical Body Area Networks (MBANs) that are close to one another.

View Article and Find Full Text PDF

Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention.

View Article and Find Full Text PDF