Publications by authors named "Geng-huang Wu"

A non-enzymatic electrochemical method was developed for glucose detection using a glassy carbon electrode modified with platinum nanoflowers supported on graphene oxide (PtNFs-GO). PtNFs-GO was synthesized using a nontoxic, rapid, one-pot and template-free method. Low-cost, green solvent ethanol acted as the reductant, and the advanced and effective 2D carbon material-GO nanosheet acted as the stabilizing material.

View Article and Find Full Text PDF

In this study, an electrochemical ascorbic acid (AA) sensor was constructed based on a glassy carbon electrode modified with palladium nanoparticles supported on graphene oxide (PdNPs-GO). PdNPs with a mean diameter of 2.6 nm were homogeneously deposited on GO sheets by the redox reaction between PdCl(4)(2-) and GO.

View Article and Find Full Text PDF

Similar to its popular older cousins of fullerene and carbon nanotubes (CNTs), the latest form of nanocarbon, graphene, is inspiring intensive research efforts in its own right. As an atomically thin layer of sp(2)-hybridized carbon, graphene possesses spectacular electronic, optical, magnetic, thermal and mechanical properties, which make it an exciting material in a variety of important applications. In this review, we present the current advances in the field of graphene electroanalytical chemistry, including the modern methods of graphene production, and graphene functionalization.

View Article and Find Full Text PDF

This communication reports a novel electrochemiluminescence (ECL) sensor based on covalently linking bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) (Ru(II)-NH2) with graphite oxide (GO) on a glassy carbon electrode. 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride and N-hydroxy-succinimide were applied to activate the carboxyl groups on the GO surface and catalyze the formation of amido link between Ru(II)-NH2 and carboxyl groups on GO. The composite film was characterized using atomic force microscopy, transmission electron microscopy and Fourier transform infrared absorption spectroscopy.

View Article and Find Full Text PDF